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Executive mmar

The objective of this study is to investigate the yarn geometry of multiaxial preforms. The
importance of multiaxial preforms for structural composites is well recognized by the
industry but to exploit their full potential, engineering design rules must be established.
This study is a step in that direction. In this work the preform geometry for knitted and
braided preforms were studied by making a range of well designed samples and studying
them by photo microscopy . The structural geometry of the preforms is related to the
processing parameters. Based on solid modeling and B-spline methodology a software
package is developed . This computer code enables real time structural representations of
complex fiber architecture based on the rule of preform manufacturing. The code has the
capability of zooming and section plotting. These capabilities provide a powerful means to
study the effect of processing variables on the preform geometry. The code also can be
extended to an auto mesh generator for downstream structural analysis using finite element
method. This report is organized into six section. In the first section the scope and
background of this work is elaborated. In Section two the unit cell geometries of braided
and mult-axial warp knitted preforms is discussed. The theoretical frame work of yamn path
modeling and solid modeling is presented in Section three. The thin section microscopy
carried out to observe the structural geometry of the preforms is the subject in section four.
The structural geometry is related to the processing parameters in section five. Section six
documents the implementation of the modeling techniques into the computer code MP-
CAD. A user manual for the software is also presented here. The source codes and
published papers are listed in the Appendices.



hapter - 1. Intro tion

The important role of preforming in the chain of composite manufacturing processes has
been well recognized by the composite industry in the recent years. It has been
demonstrated in many cases that the mechanical properties of a composite can be improved
by the pre-orientation, pre-shaping and pre-placement of matrices (as in the case of
commingled thermoplastic composites). The reduction in processing steps due to
preforming also contributes to the reduction of manufacturing cost of composites. The
recent rise in popularity of composite production by resin transfer molding (RTM) further
expand the need for advanced preforming technology. Of the large family of textle
preforms, the class of multiaxial preforms presents perhaps the most promising solution to
the economic manufacturing of high damage tolerant structural composites.

Considering the importance of multiaxial preforms for structural composites, it was
recognized by NASA and Drexel that engineering design rules must be established in order
to exploit preforms to their full potential for composites. In order for them to be useful,
these design rules must be capable of linking preform processing parameters to the
structural engineering design environment.

Central to this linkage is the quantification of the structural geometry or the fiber
architecture of the preforms in terms of processing parameters. This geometric model
provides a means for the incorporation of materials properties into a preprocessor for down
stream finite element structural analysis. The fiber geometry for knitted and braided
preforms were studied by making a range of well designed samples and studying them by
photo microscopy.

Based on solid modeling and B-spline methodology a software package was developed at
the Fibrous Materials Research Center. This computer code enables real time structural
representations of complex fiber architecture based on the rule of preform manufacturing.
The code has the capability of zooming and section plotting. These capabilities provide a
powerful means to study the effect of processing variables on the preform geometry. The
code also can be extended to an auto mesh generator for structural analysis.



hapter 2. - Processing Model

2.1 Background

The current trend in the composite materials industry is to expand the use of composites
from secondary non-load bearing to primary load bearing structural application. This
requires a significant improvement of the damage tolerance and reliability of composites.

In addition, it is also desirable to reduce the cost and broaden the usage of composites from
aerospace to automotive and building construction applications. This calls for the
development of a capability for quantity production and the net or near-net shape
reinforcement of structural composites.

In order to improve the damage tolerance and delamination property of composites, a high
level of through-the-thickness strength is required. The reliability of a composites depends
on the uniform distribution of the materials and consistency of interfacial properties. The
structural integrity, handleability and formability of the reinforcing material for the
composite are critical for large scale automated production of structural shapes.

As introduced by Ko [2.1], there is a large family of textile preforms available for advanced
composites ranging from 3-D integrated net-shape structures to thin and medium thickness
multilayer fabrics. In addition to properties translation efficiency, structural integrity and
formability, a key requirement for textile preforms for building construction is their
availability at a reasonable fabrication cost. There are two families of preforms which have
the potential to meet the demand for structural composites 3-D braid and multiaxial war
knit IMWK) fabrics.

In order to fully understand the processes associated with three dimensional fiber network.,
it is necessary to develop a mathematical model of the fiber network. The fiber networks
under consideration have no value to the realm of engineering unless they can be
manufactured. In this section the methods of forming 3-D braids and multiaxial warp knits
(MWK) using existing mechanisms are investigated. The models developed herein relate
the nature of the fiber networks to the geometric properties of the resulting fabric through
an understanding of the fabrication machine.

The interest of this section is to develop processing models of 3-D braid and MWK which
predict the geometric parameters of the braided and knitted fabric and relate them to the



processing variables. In general, the specific geometry of a fabric to be formed is affected
by the size of the yams and their placement within the machine, and the formation of
geometrical shapes can be achieved by the proper positioning of longitudinal, transverse
and through thickness laid-in yarn systems. In addition to the geometrical effects of these
systems, the packing of yarns within the structure will also be affected. Furthermore the
mechanical properties of the resulting structures are affected.

2.2 3-D braiding
2.2.1 3-D Braiding Process

3-D braiding technology is an extension of well established two-dimensional (2-D) braiding
technology in which fabric is constructed by the intertwining or orthogonal interlacing of
two sets of yarns (braiders and axials) in order to form an integral structure. 3-D braids,
widely used to reinforce structural composites, provide enhanced properties and the
possibility for near-net-shape reinforcement. as opposed to conventional weaves which are
layered to form composites.

A generalized schematic of a 3-D braiding process is shown in Figure 2.1. Axial yarns, if
present in a particular braid, are fed directly into the structure from packages located below
the track plate. Braiding yarns are fed from bobbins mounted on carriers that move on the
track plate. The pattern produced by the motion of the braiders relative to each other and
the axial yams establish the type of braid being formed, as well as the microstructure.

3-D braids have been produced on traditional horn-gear machines for ropes and packings in
solid. circular, or square cross-sections. A number of new machines without the traditional
horn-gears have been developed to create 3-D braids with complex shapes. Track-and-
column and 2-step braiding processes are two examples of the new developments. The
mechanism of these braiding methods differs from the traditional horn gear method only in
the way the carriers are displaced to create the final braid geometry. Instead of moving in a
continuous Maypole fashion, as does in the solid braider, these 3-D braiding methods
invariably move the carriers in a sequential. discrete manner.
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Figure 2.1 Schematic drawing of a generalized 3-D braider.

Figure 2.2 shows a basic loom setups and the carrier motions during four step braiding in
a rectangular configuration. The carriers are arranged in tracks and columns to form the
required shape and additional carriers are added to the outside of the array in alternating
locadons. Four steps of motion are imposed to the tracks and columns during a compiete
braiding machine cycle, resulting in the alternate X and Y displacement of yam carriers.
Since the track and column both move one carrier displacement in each step, the braiding
pattern is referred to as 1x1. 0° axial reinforcements can also be added to the track-and-
column braid as desired. The formation of shapes, such as T-beam and I-beam, is
accomplished by the proper positioning of the carriers and the joining of various
rectangular groups through selected carrier movements.



- 4

Column direction

Initial Position = X

Step 3 Step 4

Figure 2.2 Formation of a rectangular 3-D track and column braid

2.2.2 Quantification of the Braiding Operation

The understanding and quantification of the braiding process is necessary for later
idenufication of the unit cell geomewry. One way of looking at braiding is to consider the
process as a permutation operator. in which the operator maps from a two-dimensional
lattice to another two-dimensional lattice and the braided fabric is considered as the trace of
the map. This approach is taken by Ko and Pastore [2.2]. Although it provides a
mathematical description for braiding motions, considerable simplification has to be made
to apply the general theory to practice.

In the present work a direct approach is taken where the motion of yam carriers are traced
throughout a braiding cycle. This trace along with other relevant processing information is



used to generate the path of the yam and the shape of the braided fabric. This approach can
easily be translated to computer codes to simulate braiding [Chapter 6].

2.2.3 Notations and Conventions used in the Model
Geometry

The loom is consists of m tracks and n colums. The outermost tracks and columns do not
move. A loom matrix Bjj is defined such that Bjj=1 if a carrier position contains a bobbin.
Otherwise Bj=0. The lower right comer bobbin is taken as the reference bobbin and is
defined to be at position 1,1.

Braiding cycle

The four step braiding cycle, as shown in Figure 2.2 can be broken down into the
following operations:

Step 1: The odd tracks move left and even tracks move right. (left -1; right +1)

Step 2: The odd columns move down and even columns move up.(up +1; down -1)
Step 3: The odd tracks move right and even tracks move left.

Step 4: The odd columns move up and even columns move down.

The model is developed for 1x1 braiding pattern. i.e, all tracks and columns only move
zero- or one-carrier distance in any steps. but it can easily be extended to 1x2, 1x3. 2x3 or
even complicated mixed patterns.

Relational Operators

The relational operators used in the formulation may not be apparent to all the readers and
hence are explained here

M “ n
lati

_)
This is a conditional operator and is used to express an “if-then” relationship. p—q implies
that if p is true q takes place.
i.e. (b>10)—a=2, implies that if b is less than 10 then a is equal to 2.



niunction “A”
The conjunction operator is equivalent to logical AND used in most high level
programming languages.

i.e. (b>10)*(c>9)—a=2, implies if b is less than 10 AND c is less than 9 then a is equal to
2

The Position Tensor, P

The positon tensor traces the bobbin as the braiding progresses.

The subscripts i and j denote the bobbin that is being traced. (i,j) is the position of the
bobbin at the start of braiding.

The third subscript k can have two values, T or C. T is for track and C is for column.

The superscripts p and s stand for period and steps respectively. In four step braiding each
period consists of four steps. Writing out the third subscript:

P2
prE =y U7 (2-1)
{Pﬂ'c}

Here. P71 is the track position of the bobbin 1. at the end of p period and s steps.
Similarly, Pf¢is the column position. If the position tensor is known as the braiding

progresses the trace of the yamn can be easily determined.

2.2.4 Representation of the Braiding Cycle
Startup (0 cycle, 0 step)

At the startup phase all the bobbins are at their inital positons. This is represented as
follows:

P22 (i
Pief 1 &

The inital cycle

Step 1: Instep 1, the odd tracks move left (~1) and the even tracks move right (+1). This
is formally represented as:



poo (2-3)

ijC

{Pﬁ}} _ {(Bij = 1) A(1<Pid <m)— P{} +(_1)P?8}

The condition Bjj=1 in the conjunction states that we trace only the looms which have
bobbins. Since this is always true, it will be omitted but implied. With this simplification:

0. , . Pye
{Pi,.,} ) {(1 <P% <m)— P2 +(-1) } o)

0,0
PijC

Step 2: In step 2, the odd columns move down (- 1) and even columns move up (+1).

PO 2 PO.I
ijT = T 1 (2_5)
P2 (1< P2 <ny— PEL+ (=)
Step 3: In step 3, the odd tracks move right and the even tracks move left.

{Pi‘%} ) {(1 <P <m)— PiS _(_1)*’;“3}

0.2
PijC

(2-6)

Step 4: In step 4, the odd columns move up and even columns move down.

Pyl _ = ) =
Pe (1<P’3 <n)— P2 —(-1)""

Generalization to subsequent steps

Once the motion of the loom for the first braiding cycle (which consists of 4 braiding steps)
is simulated. the subsequent steps can be progressively generated by equeations (2-8) to (2-
1D

Step 1

Pﬂ%} _ 1< Pgém <m)— p:p;;u + (_l)pg-c'-‘ -
Step 2

Pir pei 29
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Pz‘; = Pll:'l'
P~ |0 <Pt <n)y— P22 - (-1

An example

{Pgﬁ} ) {(1 <PPZ <m)— P?2 - (-1)¥

} (2-10)

} (2-11)

We use the formulation to trace the orbit of bobbin initially at (3,3) on a (5x14) loom. Here

1=j=3, m=5 and n=14.

The machine setup and the orbit of the bobbin is shown in Figure 2.3.

itigliza
Par| _[3
Poae) |3
.

Step 1

Parl _ {3+(—1>3} _ {21
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Step 2

Par|_[ 2 |_[2
PRIl 13+ (=D |4

Step 3

Pur| _[2-(=D*] _[1
P 4 T4

Step 4

(2-12)

(2-13)

(2-14)

(2-15)
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Step 4
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We can carry on the process to produce the following trace for the bobbin. The process can
be carried on to show that the orbit of the bobbin initially at (3,3) is given by:

(3.3), (1,4, (2.4). (4.2), (5.2), (7.4), (8.4), (10,2), (11,2), (13.4), (13.5), (12.3),
(10,1), (9,3), (7.5). (6.3), (4,1) (the sequence repeats itself)

In each ordered pair the first element is the track position at the end of the cycle and the
second element is the column position.

The motion of the bobbin is periodic. While to trace the yam it is not necessary to
determine the period. the information is useful in tracing the bobbin on the loom and to
study the braid cross-section. The knowledge also helps in conserving computer memory
when the formulation is used to simulate the machine motion on a computer. The period is

10



measured by comparing the position of the bobbins at the end of each cycle to the initial
position. A full period is braided when the following equation becomes true.

V(i jk), P =Py (2-21)
Equation (2-21) implies that all the bobbins move to their initial positions.

Initial Position of Bobbin (3,3)

25
S

—

pLA

= Yarn Carrier @ = Yarn Carrier in Orbit of (3,

@) I@l
IOl@lOlOI

Fig 2.3 Machine Setup of 5x14 loom for 1x1 braiding and the orbit of bobbin initially at
(3.3)

We note that the orbit of the element (3,3) do not pass through all possible bobbin
positions. Out of 51 possible bobbin positions the orbit passes through 17 of them. If a
single yarn passes through all possible bobbin positions, the braid pattern is called fuily
integrated. In a fully integrated braid. the orbit of a single yamn determines the entire

pattern. The braid shown in Figure 2.3 is not fully integrated. To obtain the complete
braiding pattern we need to examine the orbit of other elements. Let us examine the orbit of
outer elements (3,2) and (3,4). The orbit of (3.2) is given by:

(3,2), (5.4), (6,4), (8,2), (9,2), (11,4), (12.4), (14,3), (12,1), . (11,3), (9.5). (8.3),
(6,1), (5.3), (3,5), (2,3), (2,2), (3,2)

11



The orbit of (3,4) is given by:

(3.4), (4,4), (6,2), (7,2), (9,4), (10,4), (12,2), (13,2), (13,3), (11,5), (10,3), (8,1),
(7,3), (5,5), (4,3), (2,1), (1,2), (3.4)

We see that the three orbits are mutually exclusive and they together pass through all 51
possible bobbin position. Therefore for our example the orbit of these three elements
together define the complete brading pattern.

As an example of an integrated braid we examine a 5x13 braid. Here m=5, n=13. Again
using equations (2-2) to (2-11), we determine the orbit of element (3,3) as follows:

(3.3), (1.4), (2,4), (4,2), (5,2), (7.4), (8,4), (10,2), (11,2), (13.3), (11,5), (10,3),
(8,1), (7.3), (5.5), (4,3), (2,1), (1,2), (3,4), (4,4), (6,2), (7,2), (9,4), (10,4), (12.2),
(13,2), (11,3), (9.5), (8,3), (6,1), (5.3), (3,5), (2,3), (1,2), (3.2), (5,4), (6,4), (8,2),
(9,2), (11,4), (12,4), (12,3), (10,1), (9,3), (7,5), (6.3), (4.1)

As it can be seen from Figure 2.4, the orbit passes through all possible 47 bobbin
positions. This also shows that slight change in processing parameters may cause a drastic
change in braid pattern.

2.2.5 The Yarn Trace
Once the elements of the position tensor P is known, the yarn trace can be calculated. In
calculating the yarn trace, it is assumed that a motion L of the loom will cause the yarn at

the braiding plane to move a distance Lr. r is defined as the braiding ratio. The takeup is
assumed to take place at every second step.

With the above assumptions for yarn starting from bobbin ij, we have:

XSt =P (2-22)

Y

Here. X§* is the x-coordinate of the yarn. The origin of the coordinate system is at the

braiding plane corresponding to yarn I.1.

12



Initial Position of Bobbin (3,3)

. = Yamn Carier @ = Yarn Carrier in Orbit of (3,3)

— —

NBis 48, N o®

Fig 2.4 Machine Setup of 5x13 loom for 1x1 braiding and the orbit of
bobbin initially at (3,3)

Similary,

Yo =Poir (2-23)
and.

s = [zp + Int<L—i—J'>} * pick (2-24)

2.3 Multiaxial Warp Knit.

Knitted fabrics are interlooped structures wherein the kintting loops are preodued by the
introduction of the knitting yarn either in the cross machine direction (weft knit) or along
the machine direction (warp knit). The unique feature of the weft knit structures is their
conformability. But the most undesirable feature, from the structural reinforcement point
of view, of the weft knit structure is their bulkiness which leads to the lowest packing

13



density, or lowest level of maximum fiber volume fraction compared to the other fabric
preforms. Thus, the multiaxial warp knit (MWK) 3-D structures are more promising and
they have undergone a great deal more development in recent years.

The MWK fabric systems consist of warp (0°), weft (90°), and bias (8) yarns held
together by a chain or tricot stitch through the thickness of the fabric, as illustrated in
Figure 2.5. The major distinctions of these fabrics are the linearity of the bias yarns; the
number of axes; and the precision of the stitching process. The way of introducing the bias
yarns is to lay in a system of linear yarns at an angle. Depending on the number of
guidebars available and the yamn insertion mechanism, the warp knit fabric can consist of
predominately uniaxial, biaxial, triaxial or quadraxial yamns. The latest development, as
shown in Figure 2.6, in the impaled MWK is the LIBA system wherein six layers of linear
yarns can be assembled in various stacking sequences and stitched together by knitting
needles piercing through the yarn layers.

Theoreucally, the MWK can be made to as many layers of muitiaxial yams as needed, but
the current commercially available machines only allow four layers (the Mayer system) of
0°,90°, +8, and -6 insertion yarns, or six layers (the LIBA system) of 2(90°), 0°, 2(+9),
and -6 insertion yamns to be stitched together. All layers of insertion yarns are placed in
perfect order each on top of the other in the knitting process. Each layer shows the
uniformity of the uncrimped parallel yarns. To ensure the structural integrity, it is clear that
the 0° yarns cannot be placed in either top or bottom layer. The insertion yarns usuaily
possess a much higher linear density than the stitch yarns, and are therefore the major load
bearing components of the fabric.

14
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Figure 2.5 MWK fabric systems.
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Figure 2.6 MWK LIBA system.
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The MWK fabric preforms having four directionai reinforcements similar to quasi-isotropic
lay-up can be produced in a single step. Besides good handleability and production
economics, the MWK fabric preforms also provide the conformability to complex shapes,
the flexibility in the principal yamn directions, and the improved through-the-thickness
strength. The MWK fabrics have now been used for playing field surfaces, rubber coated
fabrics for lifeboats, rescue floats, inflatable sport boats, heavy-duty tarpaulins, geotextiles
and filter fabrics, and automotive air bags.

The key geometric parameters of the MWK fabric preforms, which affect the reinforcement
capability and the composite processability, include the number of yarn axis, the orientation
of bias yarns, total fiber volume fraction, pore size and pore distribution, and percentage
of stitch fibers to total fiber volume. The process variables adjustable to control the MWK
micro-structure include the type of knit stitch. the ratio of stitch-to-insertion yamn linear
density, the orientation angle of bias yarns, and the thread count. The concept of a unit-cell
is used to establish the relationship between the geometric parameters and process
variables.

2.3.1 Knitting Process

The principal mechanical elements used in knitting are needles, which form the loops to
interlace the linear insertion yarns. Therefore, knitting process can be fully understood if
the motion of the needles is described. The loops in knitted fabrics are formed essentiaily
on a very similar principle. Following Thomas [2.3], the looping process is demonstrated
for a single latch needle by the consecutive steps shown in Figure 2.7. The general knitting
action of a latch-needle machine can be found in [2.4].

Consider the needle which has at its stem a loop already fromed during the course of the
knitting process. as in Figure2.7(a). A thread is then placed under the hook of the needle.
The loop is restrained in its position whereas the needle is allowed to move through it. As
the needle moves downward. the existing loop will push the latch and close the hook
(Figure 2.7c). When the top of the hook reaches the level of the existing loop (Figure
2.7d), this loop is pulled out of the way by the yarn tension. Then as the needle moves
upward again, the thread in the hook opens up the latch, and it becomes the next 'existing’
loop. More loops are generated as the process repeats.

16



(a) (b) (c) (d) (e)

Figure 2.7 The needle cycle in knit fabrics.

Generally, the warp knitted loop structur is made of two parts. The first one is the loop
itself. which is fromed by the yamn being wrapped around the needle and drawn through the
previous loop, as described above. This part of the structure is called an overlap. The
second part is the length of yam connecting the loops, which is called an underlap. Itis
formed by the shrogging movements of the ends across the needles. Since the underlap 1s
connected to the root of the loop, it causes. due to warp tension, an inclination to the loop
structure.

Two different lap rorms are used in warp knitting, depending on the way the yarns are
wrapped around the needles to produce an overlap. When the overlap and the next
underlap are made in the same direction. an open lap is fromed, shown in Figure 2.8(a).
If. however, the overiap and the following underlap are in the opposition to one another, a
closed lap is formed. shown in Figure 2.8(b).

17



Figure 2.8 Open and closed lap configurations

For a chain (pillar) stitch. it is formed when a needle is being lapped continously by the
same guide. Since the guide bar does not lap the adjacent needles, there are no sideways
connections. The chain lapping movement can be open (see Figure 2.9), closed (see
Figure 2.10) or can be a combination of closed and open laps. The more common open lap
chatn construction. shown in Figure 2.11. is fromed when the guide laps the needle
alternately from the right and the left. The chain notations, as derived from Figure 2.9, are
0-1 for the first course and 1-0 for the next. To produce a closed lap chain, the guide has
to lap the needle continously in the same direction and the chain notations are 0-1 for all
courses, as illustrated in Figure 2.10.

18



Figure 2.9 An open-lap chain stitch.

Figure 2.10 A closed-lap chain stitch.

19



Figure 2.11 An open-lap chain stitch construction

For the multi-axial warp knits(MWK), straight warps, straight filling and off-axis lay-ins
are introduced and the stitch yarn is looped over the intersection of filling yarn and off-axis
yamns. As shown in Figure 2.5, the unit cell of the MWK includes warp (0°), weft (90°),
and bias (38) yarns held together by a chain or tricot stitch through the thickness of the
fabric. The size of the unit cell depends on the orientation of off-axis yarns and the
diameter of the insertion yamns. In this report, the chained MWK is mainly focused, and

the tricot MWK can be studied in a similar way.

2.3.2 Stitch Loop Model

As mentioned previously in this section, the stitch loop is formed by needle motion. But, it
is very difficult to trace the stitch yarn path in the 3-D space when it is guided by the
needle. Unlike the machine motion of 3-D braid, the relationship between machine motion
and stitch yarn path in MWK is imposibly established. Therefore, assumptions have to be
made in order to describe the stitch yarn path. The following points should be considered
before a loop model is to be built.

20



1. The shape of the loop, loop inclination and fabric weight may change slightly without
changing the course and waie counts.

2. The configuration of the yarn within the kninted cell is affected by a great number of
variables such as yam properties., warp tensions, ta-up tensions, yarn lubrication , etc.

It is proposed that the ioop shape of the fabric in the machine state is more likely to be
determined by the physical pull of the take-up mechanism and the accommodation of the
root configuration, than by the bending forces. Taking these facts into account, the
following loop model for the fabric in the machine state, shown in Figure 2.12, is

/
@
N

an
o

Figure 2.12 The 'machine state” loop modetl

suggested.

The model can be divided into three parts:

1. The loop shape which is iilustrated in Fig.2.13 can be described as
the loop's head and the straight arms. The loop head is on



horizontal plane, z = (), while the loop arm is in a 3-D space.

r : radius of sdtch varn
Rloop : radius of loop head

-
'3

Figure Z.13 The loop part of the 'machine state” loop model.

loop's head = 2 TRIcop = Anr

loopsarm = 4 V(H - )= - 4r2 (2-25)



2. The loop-over, which is the loop over insertion yams, can be described in the
following figure 2.14:

Rins : radius of the insertion yam
r: -adius of the stitch varn
R’ @ radius of the circular arc. which partially wrap around the off-axis insertion vam

Rins/cos(459) = E Rins

X
N

Figure 2.14 The loop over the insertion yarns from the ioop model

loop-over'sficad =2 TR" =2 ~ 2 TRins

-

. . e . H’ o
loop-over's armtentering) = 27°\] *TRins + 1)= = ( = - 4r - R")2 (2-26)

loop-over’'s armtleaving) = 2\/ (7Rins + )2 + I-IT

- 4r-R")?



3. The details of the root of the loop are illustrated in Figure 2.15. The first kind of root
for the yam entering the loop-over can be caiculated as:

T -
R

27r ( e) = 2nr (1 -%) (2-27)

7Rins

)

where 8 = tan -1(

HT+ 4r - V2 Rins

Figure .13 The vam root configuration



The second kind of root for the yarn leaving the loop-over can be calculated as:
o
2rr (—
( 7t)

7Rins

where a = tan-1( :
I-—Iz-- 4r - ¥2 Rins

The amount of yam in the root of the loop 1s therefore:

a
loop'sroot = 2ar(—) + 2mr(l-

8

Hence. the compiete model can be descniped as:

) 4 Al - T~ . a
L=6nr+4~N(H -r)~~-dr« - 2+2TRins + 2rcr(;v + an(l-g)
[ Tt

/ q°

+2\j (TRins + r1= =+ —+dr - R")2 (2-28)

-:-2\/H (TRins + ri= — . H, -4r-R"M2
By appiving the ioop model stated above. e 2ntire shape of the stitch varn can be
described provided that processing parameters are given. Thus. the key points of the unit
cell of a MWK preform. inciuding stitch yarns and insertion varns. can be obtained through
a geometric analysis. The details of how to acquire the key points matnematically will be
presented in Chapter tree.
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In this chapter, the theoretical framework of computer aided geometric modeling for the
structural analysis of textile reinforced composite materials is presented. Based on the
processing model developed in Chapter 2, the illustration of generating key points for each
yarn path is presented for 3-D braid and Multiaxial Warp Knit composites, respectively.

3.1 Theoretical Background

The first step in the construction of a geometric model of a textile preform is to model the
preform processing technique. The machinery which forms the textile preform dictates the
geometry of the yam path. By proper modeling of the process, it is possible to generate the
basic information associated with the yarn path. The modeling of the process has been
discussed in detail in Chapter 2.

The aigonthm 1s deveioped such that the designer can enter concise information about the
machine parameters and have the aigorithm output a set of "knots’ ‘which describe the vams
ind yam pathis within the fabric. The 'knots  are a sequence of points defining the center ot
the yarn in such a way that the entire yam can pe regenerated from this finite set.

3.1.1 Yarn Path Modeling

Given a set or knots rrom the modeling of e textle structure. it is now necessary to
predict the geometric Senavior of the yam between these points. The varn path wiil be
dictated by the matenai properues. the cross-sectional geometry of the vam. and the motion
oI the varn relatve to the other vams.

The matenal properues of the vam are modeied in terms of the minimizaton of strain
snergy on the yamn eiement. Strain energy s minimized through the incorporation of a B-
spiine funcuon to generate the path of the vam. The basic assumpuon of the B-spiine is 10
minimize the term (3.1]

L
f r’ds (3-1)
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where, L= total length of the yarn
2
r = g(s) = spline function of the yarn path
and, s = path length.

since r”” is closely related to x (the curvature), the minimization of this term minimizes
curvatre, and hence the bending strain (€ = E x) of the yarn. Additionally, the use of the
Bspline minimizes the twist in the yarn {3.1] In this work a constant cross-section has
been employed, which twists according to the path of the yarn as defined by the B-spline.

a

Given a set of points describing the center of a yarn i, {Pl } , 1t 1S necessary to construct
=i

additional control points to form the B-spiine. These control points are formed in such a

way as to provide differentiai continuity for the yam path. To construct the curve around

point PJ1 four control points are needed. as iilustrated in Figure 3.1:

Pis1

Figure 3.1. Construcuon of Centol Peints for B-Spline Generation .

To assist in the construction of the points. a fifth point is introduced.
which serves only to make the caiculations more readable. These points
can be constructed in groups. The drst two control points are the mid-
points of the vectors connecting the point to its predecessor and
successor:

Co=—"75— (3-2)



i Piy1 +P;
Cy = kL (3-3)

The mid-point of the vector connecting these two points is not a control point, but is useful
for the construction, and is defined as:

. Cl+Ch
¢, ==~ (3-4)

The remaining two control points are formed so as to be parallel to the vector formed
between C;. and p;. They can be given as:

Ci=Ch+P;-C} (3-5)
CL=Ci+P;-C} (3-6)

This construction guarantees that the point P; is coilinear with C; and C%, and in fact is the

midpoint of the corresponding vector. The vaiue of this definition is that it provides
interpoiation of the point P; in the construction of the B-spiine (3.Z].

Having constructed the control points. it is now possible to generate the path of the center
of the vamn using the B-spline. The path of the yarn is given as:

n .
3 By tywiC;

X i=0 ,
rt) s | (3-7)

n
I Bigitwl
i=0

whers r(t) = varn spadai rath as a runcuon or arc length
wi = weighting function

and  Bi.kit) = B-spline cr order
The B-spline is defined as:
if,
gst<gq

Bj,k(t) =1



else,

t-t kel - b
Bjx(t) = {J;jg B ki) + ﬁﬁﬁ Bkt (38

Since the B-spline is constructed using four control points, in order to achieve interpolation
of the knots, the order of the spline is 3 (k=3).

The B-spline, r(t) now describes the path of the center point of the yarn as it moves from
point to point within the preform. With the construction of an analytical function
describing the path, it is now possible to idenufy certain critical parameters associated with
the mechanical response of the yarn. The twistng angle on the yarn is given by

8(s) = cos v, * v1) (3-9)

where Vo ={Pii-PP®(P;- Py
vi=(Pisg - Piy)) @ (Pyyy - Po)

as iilustrated in Figure 3.2.

Figure 3.2 Calculaticn ot Twist Angle in Yarn Path.

The twist on the vam between two points can pe given as:
L
IB(S) ds
0
T = L (3'10)

where. T = twist per unit length, or torsion.
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Similarly, the bending on the yamn path can be given by
cos(9) = (P;,1- P;) * (P;- Pyp) (3-11)

where ¢ = bending angle, as shown in Figure 3.3.

P

Figure 3.3. Calcuiation of Bend Angle in Yam Path.

With these reiationships, the basic geometric cropertes of the vam center-line are known.
and itis possible to construct the three dimensional form of the structure.

3.1.2 Solid Modeling of the Yarn

The solid modeling of the yarn is achieved tv sweeping a varn cross-section along the
center-line of the vam as determined using e algorithm described above. Since the tvpicai
varn does not have a circular cross-section. it is necessary to identry the ordentation of the
Cross-section during the sweeping process. An elliptical cross-seczon has been chosen to
represent a typical varn. and has been shown 10 be a reasonable recresentation.

The eilipse is actually an n-geon resembiing 21 ellipse to an arbitrary cegree. The points on
the cross section. ;. are calcuiated as

(3-12)

In this way, a surface representation of the physical yarn can be constructed. The
orientation of the ellipse is normai to the varn path. and the major axis of the ellipse 1s
twisted in accordance with the yamn path twist An initial odentation of the eilipse 1s



defined for the yarn at z=0. As twist is identfied in the yarn path, the major axis is rotated
at the same amount.

The yarn now consists of a surface representation. This surface can be rendered in color or
shading for informational display. Any of the suitable shading techniques work well with
this structure since it now consists of connected polygons. It is only necessary to identify
the viewpoint, the light source, and the reflectivity of the surface. The result is a color
shaded rendering of the individual yamns within the fabric.

3.2 Application to the Braiding Model

The processing model developed in Chapter 2 can be used to develop the individual
motions of the tracks and columns in the braiding machine. Based on the position tensor
operations, the positions of a bobbin can be :dentified for each cycle as the braiding process
progresses. The positions stand for the projection into the x-y plane of the path of one yamn
in a typical braiding machine.

The yarny(i,j) stands for the initial position of the yarn at the ith track and jt column in the
loom. The initial position of the vamti.j) is (Xn(i,j), Yo(i.j), Zo(i.j)), where Zn(i,j) = 0.
From Equations (2-3) to (2-11), the position of the yarn(i,j) is defined by Xk(i,j) and
Yi(i,j) after k cycles of track/column motions. Thus the sequence of points
{Xo(.3),Yo(j), ZoGg)) (X1, Y 1A Zag), v J(Xii), Yidig) Zu(i,j)) ), where
Zx(1,j) =k » Az, describes the path of the vam!i.j). Az is the distance of each pick. which
is determined by the braiding angie and the ratio of track/column movement. The
sequence, {Py = (X, Yx,Zi)}, represents the spatial position of key points in a varn path.

and these points can be used as the knots for the three dimensional braid.

These key points are the basis of generating e yarn path using the B-splines as discussed
carlier. The geometric model is compiete when we have all the key point information on the
yarns in the braid. The B-spiine algorithm is incorporated in a computer code which is
developed using C language and SunView graphics on a SUN 3/160. The modeling
program and its user intertaces is described in Chapter 6.

The shape of the yam cross-section in a 3-D braid can be determined based on the
geometric parameters, processing variables and following assumptions: (1). circular yarns

with radius. r; (2). no interactions between varns. Figure 3.4 shows a single yarn in space
with surface angle 85 after 1/1 track/column motion.
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yarn

Ay \

y

Bs= surface braiding angle
W = braiding angle

Figure 3.4 The orientation of a yamn in space.

Ay is the distance between two adiacent key points in the y-direction and its vaiue is equal
to the praiding ratio. r. as menuoned in Chapter 2. The distance of each pick. Az. is
calcuiated by:

Az = AyscouBs) = recot(Bs) = retan(y)scos(f)
the angie 8 can be calculated by the rollowing reiation:

costB) .

8 = ani| ,
tan(f)

The inclined angle w. or. braiding angie can expressed as:

y cosiB)

-8 = '
:an(Bg)

- 1

v = ]

ol A

12] A

For circular yarns. the yam cross-section becomes elliptical on a cut plane parallel to x-y
plane as illustrated in Figure 3.5:



r : radius of a yarn
y : braiding angle
o : major axis of the ellipse

Figure 3.5 Cross-section of a yarn on different planes.

3.3 Application to Multiaxial Warp Knit (MWEK)

Theoretically, a MWK can be made to as many layers of multiaxial yarns as needed. but the
current commerciaily available machines oniy allow four to six lavers of 0°, 90°, +8, and -6
insertion yarns to be sutched together. Based on the processing model presented in Section
2.3, the MWK structure consists of four tasic components: warpt0°) varns. weft (90°) yams.
bias (£8) yarns. and sutch varns through the thickness of the fabric. The dimensions of a unit
cell of MWK composites can be expressed as H x 2H’ x Hz, where H is the spacing between
two 0° inseruon varns. H' is equal to H(cod), and Hz is the thickness of the unit cell. The
geometric relationships of the unit cell is iliustrated in Figure 3.6.



e
R

90° X

=

Figure 3.6(a) The planar dimension of a unit cell of MWK composites

As can be seen in Figure 3.6(a), the 0° insertion yamns are H apart. wnile 90° inserton
varns are H’ apart The off-axis inserton varns travel through the diagonal orientation of
the H x H’ rectangie in the through-thickness orojection. As in the thickness direction
shown in Figure 3.6(b), the z-coordinate of the center point of each insertion yarn are listed
in Table 3-1. Thererore. the key points for representing inseruon vams can be determined.
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Hz = 4(2Rins) + 2(2Rsy)

Rins : Radius of insertion yarn
Rsy : Radius of stitch yarn

Figure 3.6(b) The through-thickness dimension of a unit cell of MWK composites

Table 3-1 Z-coordinate of the center point of each insertion yam

inserton vam ‘ z-coordinate
90° ’ Rins + Rsv
0° { Rins + 3Rsv
+6 i Rins + 5Rsv
-6 , Rins + 7Rsv




For the stitch yam, based on the processing model given in Section 2.3, twenty-seven key
points are identified in order to represent the stitch yarn within a unit cell. The location of
each key point is marked and shown in Figure 3.7.

Figure 3.7 Locauon of 22cn kev point in a unit caii.

These key points are usually located at the :ntersections of two kinds of curves. tor
instance. the intersection of straignt iine and arc (loop). The coordinates of each key point
can be expressed in terms of the processing tarameters. such as H. H'. Rinsert. Rloop,
and Rsy. The origin of the coordinate system is located at the lower-ieft corner of the unit
cell. Forexampie. at point #1. it can te readiliv caiculated that

. H
x-coordinate : 5 - Rsy
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y-coordinate : - Rsy - Rloop

For another exampie, at point #2, the geometric relationship is shown in Figure 3.8.

Rsy
Bt #3
A \
H H' - 3Rsy
<
' :
\ 32
4Rsy Y _-* "_ - 2Rsy
\J
X -Y plane Y - Z plane

Figure 3.8 Geometnic reiauonsaip for key point #1. 22 and #3.

. ~4Rsv .
o - ’Rsy H? ,
; ; H . _H JRsv
Thus. the xcoordinate isequal to= - X" - Rsv [ = 3 Rsy - 4Rsy(T._) ]

The distance z' can be calculated in the foillowing trigonometric operation:

. H -4Rsv. . Rsy
2= C2RYF3Rsy’ = " RY*F3Rsy



Thus, the coordinates of the point #2

x - coordinate : %-Rsy-‘iksy(—zzﬁ? )
y - coordinate : 0

- coordinate - ] __Rsy
Z - coordinate : 2Rsy + H - 3Rsy

For another example, Figure 3.9 shows the geometric relationship between the key point
#8 and point #9.

Rsy
-

r o

y=0.0

- 2Rsy

X - Y piane Y - Z plane

Figure 3.9 Geometric reiatenship for point #8 and #9.

The distance x’ can be determined by trianguiar relationship:

2Rsv .
7’

X" = 3Rsy (



Thus, the x-coordinate of key point #8 is

h ., h 2Rs
x=5+x =3 +3Rsy(?z)

For the y-coordinate, the enlarged geometric relationship is shown in Figure 3.10. The
horizontal distance, d, can be determined from triangular relationship:

d = 3Rsy tan(6)

Figure 2.10 Enlarged view of geomerry around key point #8.

where

2Rsv
HY

tan (8) =

From the geometric reiadonship the distance v’ can be calculated by

2Rsy H’

" = Jsin(8) cosB) = d = 5
y ( H'2 + 4Rsyé)1/2) ( (H?:+ 4Rsy2)1/7)

or,
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2Rsy ) ( H’ )
(H’2 + 4Rsy2)1/2" " (H’2 + 4Rsy2)1/2

2
y = sy ( L

_ ___12Rsy3
~ H'2 + 4Rsy?
Thus, the y~coordinate of the point #8 is -Rsy - 12Rsy> . The space coordinates of
° H'? + 4Rsy?

the key point are

_,H 2Rsy, o . _ l12Rsy3
(xyz) = (7 + 3Rsy (=3). -Rsy H’2+4Rsy2"ZRSY)

From Figure 3.9, the coordinates of the key point #9 can readily be determined as:

(xy,z) = (%I- + Rsy, - Rsy - Rloop. 0)

For the key point #10. where the stitch yam starts to “wrap” around the orf-axis inserton
varn. 1ts geometric reiationship with key point#11 and key point#12 is described in Figure
311

[n the case of the cnientation of insertion varn 1s ©45°, the distance A. on the cut cross-

. . . '~ . - . . ~
section. is equai to . or, v2Rins. From the observation. the coordinates of the

cos(45°)

xey point#10 can be expressed as:

m

H =
=—- v 2 Rins. 7Rins;

(x.y.z)=(
Simiiarly. the coordinates of the key point=1! can be found as:

’

Xy.z) =1 i H7 8Rins + Rsv)



stitch yarn

1nsertion yarn

B : the radius of the insertion yarn, Rins
A : Rins/ cos(0)

8 : the orientation of off-axis insertion yarn

rigure 3.11 Key points in the loop-over poruon.

The locadon of key roun#13 is a shift of H' of the kev point#9 in v-direction. The
coordinates of the kev point#13 are

(X.y,z) of the comwA#9 + 0.H.Q) = -

(ETken

+ Rsy. H” - Rloop - Rsy. 0)

Similariy, the location of key point#14 is a shit of H’ of the key poin#8 in v-direction.
The coordinates of the key point#14 are

(x,y,z) of the coin#8 + (0.H'.0)

H .. 2Rsy. .. 12Rsy3
= ( 5 + :RSY‘._H’ ), H -Rsy- H'2 + 4Rsy?’

-2Rsy)
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For the key points from #15 to #19, their locations are a shift of H' in y-direction to the key
points from #7 to #3 (in reverse order), respectively. The key points #20 and #14 are
symmetrical with respect to the line : x = —I;- The x-coordinate of key point #20 can be

found by:

fee

% -- ( x-coordinate of the key point #14 -

=H - ( x-coordinate of the key point #14)

Thus, the coordinates of the key point #20 are expressed by:

H 2Rsy 12Rsy3
-~ - Y N H’ 'R - ~ N
( 2 3Rsy ( H > H'2 + 4Rsy?

-2Rsy)

In the same sense, the key points #21 and #13 are symmetrical with respect to the line : x =
g . The x-coordinate of key point #21 can be found by:

-

(S1he s

-- { x-coordinate of the key point #13 - % )

=H - { x-coordinate of the key point #13)
H
7 - Rsy

The coordinates of the key point #21 are given by:

(? - Rsy, H’ - Rloop - Rsyv. 0)

The locations of the key points #22.#23.#24. 425 and #26 are a shift of H’ in y-direction
to the key points #10. #11. #12. #21 and #20. respectively. The location of the key point
#27 is a shift or 2H’ in y-direction to the key points #2, and the coordinates of the key
point #27 are

(x,y,2)=(X,Y, z) of the key point #2 + (0, 2H’, Q)

H 2Rsy Rsy
= — - = N 2H, - H - 3Rsy
(5 -Rsy-4Rsy( S0, 2, - Rsy + g 3pe)
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The results of the geometric analysis for the stitch yarn will be used as input for solid
modeling of the MWK. The summary of the coordinates of each key point is shown in

Table 3-2.
key X - coordinate y - coordinate z - coordinate
int
1 % Rsy - Rsy - Rloop 0
H 2Rs ] ___Rsy
2| 5 -Rsy-4Rsy(ph) 0 2Rsy + B 3Rsy
3 5 - Rloop H' - Rsy - Rloop 0
4 H 3 0
7 - 7V2Rsy H' -Rsy -Rloop(1- %—)
5 - H' - Rsy 0
6 H 3 0
7 +7V2Rsy H' -Rsy -Rloop(1- ‘/;—2)
7 3 - Rloop H' - Rsy - Rloop 0
H 2Rs 12Rsy3
8 5> + 3Rsy (X Rsy - y -2Rs
2 YE) RSY " H2 + aRsy? g
9 = +Rsy - Rsy - Rloop 0
3 : :
10 - HT - V2 Rins 7Rins
3 3§ ,
11 ? T 8Rins + Rsy
3 . )
12 ? %_ +‘[§ Rins 7Rins
13 —? + Rsy H' - Rsy - Rloop 0
H 2Rs 12Rsy3
14 > + 3Rsy (553)) H'-Rsy- y -2Rsy
2 Y'H RSY 7+ aRsy?
15 5 - Rloop 2H' - Rsy - Rloop 0
16 H 3 0
7 +3V2Rsy 2H' -Rsy -Rloop(1- «J;_z)
17 % 2H' - Rsy 0
18 H 3 0
7~ 7V2Rsy 2H' -Rsy -Rloop(1- ‘/_TZ)
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19 % Rloop 2H' - Rsy - Rloop 0
H 2Rsy 12Rsy3
20 > - 3Rs : '~ Rsy - Y -2Rs
3 y () | H'-Rsy 72 5 4Rey? y
21 —}2-1- + Rsy H' - Rsy - Rloop 0
H ; :
22 - %I— - V2 Rins 7Rins
23 H 3H 8Rins + Rsy
2 2
H . ;
24 7 22 47 Rins 7Rins
25 = +Rsy 2H' - Rsy - Rloop 0
H 3Rsy 12Rsy3
26 5 - 3Rs ; '~ Rsy - y -2Rs
3 y(5p) |20 -Rsy - 577, iRoy? y
H 2R ' RS
27 E“RSY"‘RSY(??‘X) 2H -2Rsy+H—,_—3RLsy

3.4 References
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Based on the techniques described in Chapter 2 and Chapter 3, the preform geometries of
3-D braid and MWK can be generated by computer simulation program. In order to verify
the simulated geometries, the microsturctures of real composites were examined by photo
microscopy. The composites were cut, mounted with resin, polished using polishing
powder. Pictures were taken after each polish and can be used to compare with simulated
graphics.

4.1 Material System
4.1.1 3-D Braid

Both 3-D braided PEEK/graphite and Epoxy/Milliken multiaxial warp knit composites were
used in the present study. The 3-D braided preforms were made by using commingled
Vicurex® 150G PEEK/AS4 6K yamn manufacured by BASF Structural Materials, Inc. The
commingled yarn contains approximately 280 PEEK fibers (fiber diameter ~ 27
micrometers) and 6.000 graphite fibers (fiber diameter ~ 8 micrometers). The graphite
fiber volume fracton in each commingled yarn is 62.7%. In order to obtain a composite
with corss section of 0.254 mm (0.1 inch) by 1.27 mm (0.5 inch), with a braiding angle of
$20° a Ix1 construction was produced by using 72 yamns in a loom consisting of 18
columns by 4 tracks. After braiding, the 3-D braided preforms were placed in a carbon
steel mold and consoiidated by using a hot press. and heid at 400°C and 1.38 MPa (200psi)
for an hour. After that. the mold was taken out from the hot press and placed in a cold
press and held at 1.38 MPa for another 30 minutes.

4.1.2 Multiaxial Warp Knit

The Epoxy/Milliken multaxial warp knit composite used in this study was provided by
NASA. The fiber architecture design of this material is shown in Figure 4.1. It was
fabricated with Hercules AS-4 epoxy-sized carbon tows. The 0° and 90° plies were
produced with 12 K tows. whereas 9K tows were used for the +45° plies. This tow
distribution was required to achieve similar fiber area for each ply because of the different
tow count for the off-axis plies.
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Figure 4.1 Fabric design of the multiaxial warp knit composites.
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Only the 4-ply subgroup (-45°, +45°, 0°, 90°) shown in Figure 4.2 was included for this
investigation. An additional 4-ply subgroup (+45°, -45°, 0°, 90°) would be required to
produce a symmetric quasi-isotropic fabric preform. Four 4-ply subgroups were stacked to
form the full 16-ply laminate. Note that the 16-ply stack, shown in Figure 4.2, is
unsymmetric. The 4-ply subgroup was produced by chain-knitting the carbon tows
together with a polyester yarn. Some of the 16-ply stacks were stitch together with kevlar-
29 1500 denier stitching yarn using a chain stitch.

MILLIKEN FABRIC
AS-4 Carbon tow

Chain
stitch =\

1AV ImwEwa -

Lnit ;Sa:ttETn /

- 121

4-ply knit '
MY AMWMMMWY 45
Si O F F A ‘

(16 layer
unsymmetric
layup)

Figure 4.2 Stacking seguence of the 16 plied-MWK results in an unsymmetric

conformation.
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4.1.3 Sample Preparation

The unit cell geometries of 3-D braided and multiaxial warp knit composites were observed
by the optical microscope technique. In this study, the cross-section of the 3-D braided
composite was cut perpendicular to the braiding axis, whereas the 0°-direction and 90°
orientation cross sections of the multiaxial warp knit composites were cut for examination,
as illustrated in Figure 4.3.
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Figure 4.3 Schematic of sectioning

The cut-offs were mounted in a holder with Lecoset® 7000 cold-curing resin manufactured
by Leco corporation. After the resin is cured. the samples were polished with 320, 400,
600 grid silicon carbide polishing paper , as well as 15, 5 micron aluminum oxide powder
and 1 micron alpha alumina powder, to obtain smooth surfaces for photos. All polished
samples were examined under an optical microscope with 32x magnification factor. The
montages are expected to show the variety of the unit cell structure of these samples from
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different cutting planes. Therefore, in order to study the variation of the unit cell structures
in 3-D space, a series of montage of the unit cell structures of these composites were
generated by progressive sectioning of the above samples. By doing so, the 3-D fiber
conformation of the composite can be recorded on a series of planes with certain distance
apart and thus, the 3-D fiber architecture can be envisioned and described.

4.2 3-D Braid
4.2.1 Computer Generated Graphics

The analysis of textile composites depends directly on fiber architecture of the composites,
that, in turn, can be accurately characterized by a computer aided geometric models. The
geometric models for the 3-D braided preforms are given in Chapter Three, in which the
geometric model considers the relative motions of the tracks and columns in the braiding
machine and generates a mathematical simulation of the braiding process.

In order to compare the computer-generated graphics with experimental observations, a
virtual loom of 4 tracks and 18 columns is set up on the computer. Six track/column
movements are simulated, which will constrcut 1.5 unit cells in the braiding axis. The yam
cross-section is assumed to be ellipse with the ratio of major axis over minor axis to be 0.5.
The graphics are generated from a Sun workstation. The details of the implementation of
the graphics model can be found in Chapter 6.

Figure 4.4(a) - (h) show a series of cut cross-sections of a 3-D braid. The graphs cover a
track/column movement cycle. The loom state can be seen from each cut cross-section.
First, the columns move up/down, as shown from Figure 4.4(a) 10 (c). In the next step,
the tracks travel back/forth horizontally, as shown from Figure 4.4(d) to (f). Figure 4.4(g)
and Figure 4.4(h) show the loom state after column movement and track movement.
respectively. Therefore, the braiding pattern on each cut plane represents a loom state. As
we go on examining the braiding pattern along the braiding axis, the braiding pattern will
repeat after a unit cell's length. The braiding pattern generated from computer is slightly
different from the experimental observations, especially around the boundary. This is due
to the compression while the composite was consolidated by hot pressing.

As observed from Figure 4.4(a) to (h), the braiding pattern changes 90° between Figure
4.4 (a) and (b). The braiding pattern changes 180° between Figure 4.4(c) and (g). Thus,
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Figure 4.4 Continued.
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if the cut planes are the same as the planes on which the photo pictures are taken, the
computer-generated graphs should resemble the pictures in the central portion of the
specimen.

4.2.2 Experimental Verification

The unit cell structure of 3-D braided PEEK/graphite composite is a diamond-shape
structure. The diagonal along the braiding axis was measured at 5.1 mm. The schematic of
the planes which pictures were taken is shown in Figure 4.5. The distances between each
planes are 0.2mm, 1.6mm and 2.4mm, respectively, which is long enough to represent the
variation of the structure within a unit cell. The montages showing the cross-section of the
composite along the braiding axis in these four different layers are shown in Figures 4.6.
As it can be seen in the figure, the fiber packing pattern changes along the braiding axis.
The first two pictures, taken from plane A and plane B, respectively, show no significant
difference because of the short distance separating the planes. The 9(0° fiber packing
pattern change between plane B and plane C suggests that the unit cell consists of at least
two pairs of yarns. These two pairs of yarns are othogonal to each other. The two yarns
in each pair are interlaced each other. The distance between plane C and plane D is about
half length of a unit cell. The fiber pattern on plane C is about 180° to the fiber pattern on
plane D. By induction. it can be predicted that two montages will look the same if they are
viewed on the pianes 5.1 mm apart.

In conclusion, the unit cell geometry of 3-D braided composites can be described and
visualized by the computer software.
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Figure4.5 Schematic of planes on which pictures are taken for 3-D braid.
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(c) C - plane

(d) D - plane

Figure 4.6 Photomicrograph of 3-D braided composites.
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4.3 Multiaxial Warp Knit
4.3.1 Computer Generated Geometry

The geometric model for the MWK preform is given in Chapter Three, in which the
geometric model relates the key parameter of fiber architecture to the processing variables
base on the idealized cross-sections of insertion yarns and the path of stitch loops.
Combined with the optical observations detailed in Section 4.3.2, the geometric model can
be translated into computer solid models for MWK preforms, which facilitates the
visualization of detailed internal geometries for MWK preforms and the identification of
their unit cells.

In order to obtain an overview of the figures from simulation, a schematic of the planes on
which the computer generated grapgs were taken is shown in Figure 4.7. In the figure, a
unit cell, which represents the geometry of the whole structure, is used to illustrate the
planes. Later, the computer code will generate the corresponding graphs based on the
planes shown.

Based on the geometric modeling and computer graphics techniques, the MWK preform
with 8 unit cells is generated on Sun workstation. Figure 4.8 shows the top view, side
view, back view and (1 1 1) view of the MWK preform, respectively. As can be seen, the
stitch yarn loops over insertion yarns with a chain configuration. The geometry of the
stitch yamn is simulated according to the geometric model, described in Chapter two and
three. The actual geometry of the stitch yarn can be determined by the yarn tension itself,
yarn friction coefficient and yamn bending rigidity. However, this is not in the scope of this
project. Figure 4.9 shows the (1 0 0) cuting plane and cutting section in top view and side
view, respectively. From a little distance to the previous cutting plane, a section is cut , as
shown in Figure 4.10. The cutting planes are corresponding to the polishing planes,
described in the next section. Since the cutting plane does not cut through 0° insertion
yarn, the 90° yarn does not show up in the cut section.

Figure 4.11 shows the (0 1 0) cuting plane and cutting section in top view and side view,
respectively. From a little distance to the previous cutting plane, a section is cut , as shown
in Figure 4.12. Figure 4.13 shows the (0 0 1) cuting plane and cutting section in top view
and side view, respectively. From a little distance to the previous cutting plane, a section is
cut, as shown in Figure 4.14. The cutting planes are chosen according to polishing
planes. The computer generated graphics will be compared with the photomicrographs
from the polished sample.
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Figure 4.7 Schematic of simulated planes.

58




(a) top view

Vet

(b) side view

Figure 4.8 Computer rendering of a MWK preform.
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(¢) back view

(d)(111)view

Figure 4.8 Continued.
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{a) top view and cut section

(b) side view

Figure 4.9 (1 0 0) cut plane of a MWK composite.
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(a) cut section and top view

(b) side view

Figure 4.10 (1 0 0) cut plane of a MWK composite. (seccond cut)
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(a) cut secuon and top view

'b) front view

Figure 4.11 (0 1 0) cut plane of a MWK composite.
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(a) cut section and top view

(b) front view

Figure 4.12 (0 1 0) cut plane of a MWK composite. (second cut)
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{a) cut section and side view

(b) top view

Figure 4.13 (1 0 0) cut plane of a MWK composite.

63




(a) cut section and side view

(b) top view

Figure 4.14 (1 0 0) cut plane of a MWK composite. (second cut)
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4.3.2 Experimental Verification

The schematic of viewing planes for multiaxial warp knit composites are illustrated in
Figure 4.15. The montages from the first polishing on each plane are shown in Figure
4.16 - 4.18. In Figure 4.16, 90° - insertion yarns and stitch "knots" with regular spacing
are shown as the composite is observed from a top view. Figure 4.17 and Figure 4.18
show the front view and side view of the composite, respectively. The insertion yarns look
like a shape of race track due to the compressive pressure in the thickness direction during
composite processing. By observations, the unit cell dimension from the montages of the
first layer can be defined as 2.2, 2.2 and 6.2 mm, in length, width and thickness,
respectively. The montages after the second polishing are shown in Figures 4.19 - 4.21.
Comparing Figure 4.16 with Figure 4.19, the 90° layer was polished away; the 45° layer
shows up. From the front view, only knots or cross-sections can be seen: while the stitch
loop can be observed from side view, as shown in Figure 4.21. Figure 4.22 shows the
detailed chain stitch structure ( from surface 3). The schematic of the polishing planes is
shown in Figure 4.7.

In comparison to the computer generated graphics, Figure 4.9 and Figure 4.10 are
similar to Figure 4.16 and Figure 4.19, respectively. Figure 4.11 and Figure 4.12 are
similar to Figure 4.17 and Figure 4.20, respectively. Figure 4.13 and Figure 4.14 are
similar to Figure 4.18 and Figure 4.21, respectively. As mentioned earlier, the exact
shapes of the insertion yarns are controlled by the the processing conditions. However, the
relative locations of the insertion yarns can be depicted from the photomicrographs. In
conclusion, the unit cell geometry of MWK composites can be described and visualized by
the computer software.
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Figure 4.15 Schematic of cutting planes for a MWK composite.
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Figure 4.16 Photomicrograph of a MWK composite. (surface 1)
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Figure 4.17 Photomicrograph or a MWK composite. (surface 2)
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Figure 4.20 Photomicrograph of a MWK composite. (surface 2, second polishing)



Figure 4.21 Photomicrograph of a MWK composite. (surface 3. second polishing)
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Figure 4.22 Photomicrograph of a MWK composite, showing the chain stitch loop.
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Chapter - 5. Unit il _char izati
5.1 Background

The traditional approach used in modeling of composites reinforced by three-dimensional
(3-D) preforms is to assume that their fiber volume fraction and fiber orientation are

known, either obtained from experimental measurement or provided by preform
manufactures, the relationship between preform fiber architecture and preform processing
variables is not considered. In this report, we first examine both 3-D braiding and
Multiaxial Warp Knitting in the light of fiber architecture, followed by the development of
geometric models for 3-D braided and MWK structures using a unit cell approach. The
unit cell geometries of these two 3-D fabrics are identified, and the relationship of structural
parameters such as yarn orientation angle and fiber volume fraction with the key processing
variables is established. The limiting geometry has been computed by establishing the
point at which yarns jam against each other. Using this limiting geometry factor makes it
possible to identify the complete range of allowable geometric arrangements for 3-D fabric
preforms. The identified unit cell geometries can then be translated to mechanical models
which relate the geometrical properties of fabric preforms to the mechanical responses of
composite systems.

5.2 3-D Braiding

The unit cell geometry of the track-and-column braid has been investigated by many
researchers since the early 1980's [5.1-4]. A common assumption made in most of the
analyses is that the braider yarns are oriented along the four diagonals in the unit cell.
However, the fiber volume fraction of 3-D braid is normally over 0.5, so the yarns cannot
be treated as dimensionless lines to cross each other at the center of the unit cell. This unit
cell geometry is either oversimplified or incorrect. Li, Hammad and El-Shiekh [5.3]
described a more realistic unit cell geometry, assuming a cylindrical shape for yarns.
According to their analysis, at the yam jamming point, the yarn orientation angle has a
maximum value of 55° and the yarn volume fraction has a maximum value of 0.685.
Assuming a fiber packing fraction of 0.785, this means that maximum fiber volume
fraction for the track and column braid is 0.538. At low braiding angles (<20°), the
geometric model by Li, Hammad and El-Shiekh [5.3] predicts a fiber volume fraction of
less than 0.328 (also assuming a fiber packing fraction of 0.785).
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In this report, we propose a microgeometric model for the track and column braid based on
experimental observations and computer simulation. The unit cell geometry has been
defined to establish the relationship of geometric parameters and processing variables.

A summary of braiding process is descried in the following prior to the unit cell modeling.
As described in Chapter 2, Figure 5.1(a) shows a basic loom setups in a rectangular
configuration. The carriers are arranged in tracks and columns to form the required shape
and additional carriers are added to the outside of the array in alternating locations. Four
steps of motion are imposed to the tracks and columns during a complete braiding machine
cycle, resulting in the altemate X and Y displacement of yam carriers, as shown in Figure
5.1(b)-(e). Since the track and column both move one carrier displacement in each step,
the braiding pattern is referred to as 1x1.

5.2.1 Assumptions and Nomenciature

Following assumptions are made to simplify the geometric model of 3-D track-and-column
braided structures:

1. No axial yarns (0° insertion) are included in the 3-D structure. Axial yarns may be
used to increase composite modulus and strength in longitudinal direction, although
it is not popular in practice due to the fact that 3-D braids usually have low
orientation angle as fabricated and hence the strength increase is not phenomenal.

2. 1x1 braiding pattern is assumed. Other patterns such as 1x2 and 22 can also be
used but are not popular in practice. The techniques used for 1x1 can easily be
extended to other patterns.

3. Braider yamns have circular cross-sections, same linear density and constant fiber
packing fraction:

4. Yarn tensions during braiding are sufficiently high and hence the yarn crimping
effects are negligible.
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The definitions of the symbols used in our analysis are listed below:
A. area of braid cross-section vertical to braid axis

A¢  area of total fibers in braid cross-section vertical to braid axis
Ay area of braider yarn in braid cross-section vertical to braid axis
b dimension of yarn cross-section in x'-z and y'-z planes

b’ dimension of yamn cross-section in x"-y' plane

d  yarn diameter

h,  pitch length of braid formed in a machine cycle (four braiding steps)
Ny number of braider yarns

V¢ fiber volume fraction - all fibers to total volume

n braid tightness factor

X yamn packing fraction (fiber-to-yarn area ratio)

8  angle of braider yam to braid axis (yam orientation angle)
Subscripts z, x', y' all refers to co-ordinates.

5.2.2 Unit Cell Geometry

The traditional approach used in modeling 3-D braided composites is to artificially define a
unit cell geometry for a 3-D braided structure without providing any relationship between
processing variables and geometric parameters [5.4]. All fibers in the unit cell are assumed
to incline in 4 different diagonal directions, as well as along the longitudinal direction, if
any. Fiber volume fraction is assumed to be either known or measured. In this work the
dimension, shape and fiber architecture of the unit cell is based on process and structural
analysis. Once the unit cell is identified the relationship between processing variables and
key geometric parameters has been established.

The key geometric parameters of 3-D braids (which affect reinforcement capability and
composite processability) include braider orientation, total fiber volume fraction, volume
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fraction of inter-yam void and axial fiber percentage of total fibers. Although there are only
two simple process parameters adjustable to control the micro-structure of 3-D braids
(speed ratio between braiding and take-up and linear density ratio of braider and axial
yarns), the process-structure model of 3-D braid is complicated.

Normally, yarn bundles consisting of numerous continuous filaments are used for fabric
preforms, thus, the fabric microstructure has three levels: geometry of interfiber packing in
the yarn bundle (fiber level), cross-section of yam bundles in the fabric (yarn level) and
orientation and distribution of fibers in the 3-D network (fabric level). The unit-cell
technique is commonly used to establish the geometric relation. In most of 2-D fabrics a
unit cell geometry is readily identified, but in complex 3-D fabrics it can be very difficult to
define.

The fiber volume fraction of a 3-D fabric depends on the level to which yarns pack against
each other in the structure and the level to which fibers pack against each other in a yarn.
Two basic idealized packing forms can be identified: open-packing, in which the fibers are
arranged in concentric layers, as illustrated in Figures 5.2(a) and 5.2(c); and close-packing,
in which the fibers are arranged in a hexagonal pattern as in Figures 5.2(b) and 5.2(d).
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Figure 5.2 Fiber packing in yarns. (a) Open-packing in circular
yarns; (b) Close-packing in hexagonal yarns; (c) Open-packing in
diamond-shaped yarn; (d) Close-packing in diamond-shaped yarn.
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In addition to the level of packing fraction, the fibers also establish the yam cross-sectional
shape, i.e., yarn packing in fabrics. This shape plays a very significant role in determining
how many fibers can be packed into a fabric. One of good examples is the yarn packing in
2-step braided preforms [5.5]. Due to the use of untwisted fiber bundles and high braiding
tensions, cross-section of axial yarns in the 2-step braid is deformed to prismatic shapes,
giving most compact yarn packing within the braided structure. For the track-and-column
braids, the braiding tensions are lower compared to the 2-step braids and the cross-sections
of yamns actually have a polygonal shape [5.6]. For reasons of simplicity, we idealize the
polygonal yarn cross-section as circular shape.

In order to understand the braid internal structure and the yarn interlacing pattern, analysis
of braiding carrier motion [5.6], computer graphics simulation [5.7] and computer solid
modeling [5.8] was performed and experimental observations of cross-sections of a
CARBON-PEEK braided composite[5.6] were made. Figure 5.3 shows an idealized braid
cross-section cut longitudinally at a 45° angle to the braid surface. There are four groups of
yarns inclined at angle a with the braid axis (z direction) in different directions; the yarns in
each group are parallel to each other within a specific plane. Two groups of yarns are
parallel to the x'-z plane; the other two are parailel to the y'-z plane. The cutting plane is so
selected that it cuts through the diameter of a group of yarns.

Figure 5.4(a) shows the unit cell identified from the analysis. The unit cell consists of four
partial yamns being cut by six planes. Clearly, there does not exist such a unit cell which
only consists of four complete yarns. The dimensions of the unit cell are (1/2)hy in x'
direction. (1/2)hy iny' direction and (1/2)h, in z direction (braid length). The cross-sections
of the unit cell at (1/2h;, (3/8)h,, (1/4)h, (1/8)h, and 0, are shown in Figures 5.4(b) - (f),
respectively.
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Figure 5.3 Braid cross-section cut longitudinally at a 45° angle to
the braid surface by the x'-z plane ABCD. z is the braid length
direction.
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Figure 5.3 Braid cross-section cut longitudinally at a 45° angle to
the braid surface by the x'-z plane ABCD. z is the braid length
direction.
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Figure 5.4 Unit cell geometry of 3-D track and column braid.
(a) unit cell. (b) unit cell cross-section at z = 1/2 hz. (¢) unit
cell cross-section at z = 3/8 hz.(d) unit cell cross-section at z =
1/4 hz. (e) unit cell cross-section at z = 1/8 hz. (f) unit cell
cross-section at z = 0.
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5.2.3 Unit Cell Model

The portion of 0,0,0304 in Figure 5.3 is extracted and enlarged in Figure 5.5 to show
geometric details. In Figure 5.5, d is the yarn diameter, 0 is the braiding angle.

Dimensions of b, b’ (see Figure 5.4) and h, can be obtained from the trigonometric
relationships:

d
b= ine -
b = ?:;5 (5-2)
V1 + cos?8
e =

h is actually the pitch length of braid formed in a complete machine cycle (four steps).
This length is one of the key parameters in controlling the fabric microstructures. Using
Equation (3), the braiding angle 8 can be expressed in terms of the braid pitch length h,:

1 8

O =S\ nodes (hy22d)

Restriction h; 2 2d was applied to the above equation to ensure that 0<8 <90°. The physical
meaning of this restriction is that the braid pitch length must be greater than two diameters
of the yarn to maintain a stable convergence point during braiding process.

As can be seen in Figure 5.4(b)-(f), each unit cell cross-section consists of four half oval
cross-sections of yarn. Based on the assumption of non-crimp yarn paths, total yarn area
in every braid cross-section must be the same. Therefore, a conclusion can be reached that
any unit cell cross-section contains four half oval cross-sections of yarn. The fiber volume
fraction can then be easily derived as:

1, .1
2GdGEbIn d2
=———————x=2ntk——m -
f (%h.x') (%hy') * =27 hx hy cos@ (>-4)
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Figure 5.5 A portion of braid cross-section (01020304) in
the x'-z plane consisting of four unit cells.
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where x is the fiber packing fraction, which normaily has a value of about 0.785 for 3-D
braids after matrix addition and consolidation [5.5].

The braid has the tightest structure when each yam is in contact with all its neighboring
yarns, in other words, the yams are jammed against each other. Under this jamming
condition, the unit cell has a minimum dimension in both x' and y' directions, i.e.:

V1+ cos?0
h U h =9 d —_— -
v'min X min cos8 (5-5)
and the braid has a maximum fiber volume fraction, which can be derived by combining

Equations (4) and (5):

cos9o

1+cos?8 (5-6)

T
meu=§1c

Due to bulky fibers and nonlinear crimp nature, it is difficult to fabricate a braid having the
tightest structure. In practice, the fiber volume fraction is calculated directy from the area
of fibers to the area of braided composite in the cross-section perpendicular to braid axis:

A
V=t (5-7)

c

where A_ is the area of the braided composite and Ag is the area of total fibers given by:

Ny Av

Ar=x .
f cos6 (5-8)
Combining Equations (5-7) and (5-8), we have:
NyAv
Ve=x——— -
f A.cosf (5-9)
In order to measure the fiber compactness in the braided structure, we define a braid
tightness factor, 1, as:
NyAy
n= —-——-Ac (5-10)
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According to its definition, the braid tightness factor is actually the ratio of total yarn area to
the braid cross-section area in x'-y' plane when 8 = (0°. Using Equation (5-10), the fiber

volume fraction can be simplified to:

n
=K 5-11
Vi=x coso (5-11)
Clearly, the amount of fibers within the braid is limited by the maximum fiber volume

fraction Vgnax. Combining Equations (5-6), (5-9) and (5-11), we obtain:

Ves x n <Ex cosf (5-12)
£= " 080~ 2 1+cos20
= cos20

n=7z 1+co0s28 (5-13)

Based on the geometric analysis given above, braiding angle 6 is determined from yarn
diameter d and braid pitch length h;. The fiber volume fraction, Vy, is controlled by
braiding angle 8 and braid tightness factor n. The tightness factor h, in turn, has to be
properly selected so that the required fiber volume fraction Vy is achieved and over-
jamming is avoided. Figure 5.6 shows the Vg relationship based on Equation (5-12).

The fiber packing fraction is assumed to be 0.785 in our calculation. A maximum fiber
volume fraction of 0.617 is achieved at 8 = (° (i.e. the "braid" is an assembly of
longitudinal yarns without interlacing). At 6 = 90°, which is impossible to achieve either
theoretically or in practice, fiber volume fraction approaches zero. There is no such
maximum braiding angle as suggested by Li, Hammad and El-Shiekh [5.2], wherein 3-D
track-and-column braids can be made with 0£8 <90°. As 8 becomes higher, the yarns
slide away from each other to form a more open structure, resulting in a lower fiber volume
fracton. In practice, a braiding angle higher than 45° is difficuit to achieve because of yam
slippage creating difficulties in maintaining a constant height of convergence point.
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Figure 5.6 Relationship of fiber volume fraction to braiding

angle for various tightness factors. Fiber packing fraction x is
assumed to be 0.785.
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Although a wide range of fiber volume fractions can be achieved for 3-D track-and-column
braids by using different levels of the braid tightness factor, the actual fiber volume fraction
is more likely to be closer to the jamming region as shown in Figure 5.6. The reason for
this is that yams are usually tightly compacted by their neighboring yarns due to the high
yarn tensions applied to overcome inter-yarn friction during braid formation. In practice, it
is possible that the fiber volume fraction achieved will be higher than Vp,y under jamming
conditions because of non-linear yarn paths (yarn crimp) in the braided structure. For
example, at 8 = 20°, fiber volume fraction under jamming conditions is 0.615, while fiber
volume fractions in composites having a braiding angle of 20° observed from experiments
normaily fall within a range of 0.60 to 0.65.



5.3 Multlaxial Warp Knit

A series of studies on the technology, structure, and properties of the MWK preforms and
composites have been reported by Ko and his co-workers [5.9-13]. In this section, we
propose a unit cell model for the four-layer MWK structure. With minor modifications, the
analysis can be generalized into the MWK system with six or more layers of insertion
yarns.

The MWK fabric preforms having four directional reinforcements similar to quasi-isotropic
lay-up can be produced in a single step. The key geometric parameters of the MWK fabric
preforms, which affect the reinforcement capability and the composite processability,
include the number of yamn axis, the orientation of bias yams, total fiber volume fraction,
pore size and pore distribution, and percentage of stitch fibers to total fiber volume. The
processing variables adjustable to control the MWK micro-structure include the type of knit
stitch, the ratio of stitch-to-insertion yarn linear density, the orientation angle of bias yarns,
and the thread count. The concept of a unit-cell is used to establish the relationship between
the geometric parameters and process variables.

5.3.1 Unit Cell Modeling

As demonstrated in the development of 3-D braid model, the first step in the unit cell based
modeling is to determine the unit cell dimension, so that it is the smallest repeating unit of
the structure. The second step is to assume some idealized cross-section shapes of the yam
bundles, based on experimental observations. The final and most important step is to
identify the overall unit cell geometry, from which expressions for the key geometric
parameters can be derived, and the geometric limits applied to the structure can be defined.

As can be seen in Figure 5.7, the unit cell for the MWK fabric preform can be defined in
many ways to meet the definition for a unit cell. However. it would be most reasonable to
have a unit cell which consists of a complete knitting stitch, and the insertion yarns in the
unit cell are all symmetrical. Figures 5.8(a) and (b) show the unit cells for the MWK
structure with chain and tricot stitch, respectively. Within the outlined in the figure, the unit
cell consists of one each of 0° and 90° yamns, two each of +6 and -6 yamns as well as a knit
stitch.

In order to determine the shape of yarn cross-sections, a MWK reinforced carbon/epoxy
composite was cut perpendicularly to its 0° axis. polished and examined using an optical
microscope. Figure 5.9 shows the photomicrograph of a cross-section of the MWK
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composite. As can be seen in Figure 5.9, the insertion yarns have a rectangular cross-
sectional shape with rounded corners. For example, the 0° yarns have a width-to-thickness
aspect ratio of 5.710.42.

Based on this observation, the insertion yarns are assumed to have a race-track cross
section having a width-to-thickness aspect ratio f 2 1, as illustrated in Figure 5.10(a). The
stitch yarn, which has a much lower linear density than the insertion yarns and usually
contains some twist, has less tendency to spread out in the knitting process. Therefore, a
circular cross-section with a width-to-thickness aspect ratio f =1 is assumed for the stitch
yarn, as illustrated in Figure 5.10(b).
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(b) Tricot stitch

Figure 5.7 Multiaxial warp knit (MWK) with four

layers (0°, 90°, and 18) of insertion yarns and (a) chain
stitch or (b) tricot stitch.
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(a) Chain stitch

> & '\\\'

(b) Tricot stitch

Figure 5.8 Unit cell which consists of one each of 0° and

90° yarns, two each of +6 and -8 yarns as well as a knit
stitch: (a) with chain stitch; (b) with tricot stitch.
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Figure 5.9 Photograph of a cross-section of MWK
reinforced carbon/epoxy composite.
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(a) f=wit=21

Figure 5.10 Shape and dimension of yarn cross-section: (a)
insertion yarn is assumed to have a race-track cross-section
with the width-to-thickness aspect ratio f 2 1; (b) stitch
yarn is assumed circular in cross-section with f = 1.
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Figure 5.11 shows the idealized unit cell geometry for the MWK structure, including the
shape, dimension, orientation, and position of all the insertion and stitch yarns within the
fiber 3-D network. The knit stitch is assumed to have the tightest loop construction, and
the curved loop is idealized to a rectangular shape, as illustrated in Figure 5.11(b) and
Figure 5.11(d). The dimensions of the unit cell are X, Y, and Z, respectively,
corresponding to the 0° axis, 90° axis, and the thickness axis vertical to the 0°-90° plane, as
shown in Figure 5.11(a) and Figure 5.11(c).
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Figure 5.11 Unit cell geometry of MWK structure: (a) with
insertion and chain stitch yarns; (b) chain stitch yarns only; (¢)
with insertion and tricot stitch yarns; (d) tricot stitch yarns only.
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Based on the idealized yamn shape and unit cell geometry, the geometric model of the MWK
fabric preform can be established. In the following section, the expressions for yarn
dimensions, unit cell dimensions, yarn volumes, yamn lengths, fiber volume fractions, and
criteria for geometric limit will be presented without derivation.

5.3.2 Nomenclature

X fiber packing fraction (fiber-to-yamn area ratio)

p fiber density (kg m-3)

A yarn linear density (kg m™')

8 angle of bias yarns to 0° yarn (x direction)

ds diameter of stitch yarn

w, t width and thickness of insertion yams

f aspect ratio of insertion yarns (width to thickness)
S area of yarn cross-section (m?)

L yamn length (m)

1 vamn length normalized with 0° yam length (X)

X,Y,Z  unitcell dimensions in height. width. and thickness directions, respectively

) thread count (number of inseruon yam per unit length, end m-)
n fabric tightness factor (as defined by Eq.(5-44))

V volume (m?)

Vi fiber volumne traction

v percentage of insertion or stitch fibers to total fiber volume (%)

Subscripts X. Y, Z, and +8 all refer to yarn orientations in the unit cell frame

Subscripts €. i, and s refer to unit cell, insertion yamn and stitch yam, respectively
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5.3.3 Dimensions of insertion and stitch yarns.
The widths of insertion yams:

wy = fx - ix (5-14)
wy = fy -ty (5-15)
wig = fip - ttg (5-16)

The thicknesses of insertion yarns:

A
ty = X (5-17)

Ki Zt'*'fx)

(5-18)
Kj +fy Py
A+
teg = = (5-19)
f*e *8

The diameter of stitch yarn:

(5-20)
4 Xs Ps

The cross-sectional areas of insertion and stitch vamns:

n
Sx=(2+fX'1)'tx2 (5-21)
n
Sy=(Zs fy- 1)1y (5-22
T
Sie = (;+ fte-1 ) tig? (5-23)
n
Ss=7 ' ds? (5-24)
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5.3.4 Dimensions of unit cell.

The dimensions of the unit cell in x (0°), y (90°) and z (thickness) directions:

X = ox - Wy (5-25)
Y = oy - Wx (5-26)
Z= tx + ty +2 (tte + ds) (5-27)

The orientation angle of bias yarns:

= -i=
8 = tan G(,) (5-28)

The total volume of the unit cell:
Ve=X.Y.Z (5-29)

5.3.5 Volumes of yarns in the unit cell.

The volumes of the insertuon yamns in x, y and =8 directions:

Vix = Sx - X (5-30)
Viy =Sy - Y (5-31)
Vizg =2 Sz VX2 + Y2 (5-32)

The total volume of the insertion yarns in the unit cell:
Vi = Vix + Viy + Vizg (5-33)

The volumes of the chain stitch yams in x, y and =6 directions:

1

Vsx = 3-Ss (X -5 ds) (5-34-a)
Vsy =2 Ss-ds (5-35-a)
Vsz=2 Ss-(Z-ds) (5-36-a)
Vs =0 (5-37-a)
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The volumes of the tricot stitch yams in x, y and 49 directions:
Vex = 2.Ss- (X - 3 do)
Vey=2-8s-dg
Vsz =2 -Ss-(Z-ds)
Vsio = Ss (VX2 + Y2 - ds)
The total volumes of the stitch yarns in the unit cell:

Vs = Vex + Vsy + Vsz + Vssg

5.3.6 Normalized yarn lengths in the unit cell.

The lengths of insertion yarns normalized with the unit cell dimension X:
X
lix = R =1
liy =tan o

litg= 4V 1 +tan<9

The length of chain stitch yarn normalized with the unit cell dimension X:

3.de+2
ls=3+2——p

The length of chain stitch varn normaiized with the unit cell dimension X:

3-ds+z

ls=2+ 27 +V1 +tang

5.3.7 Fiber volume fractions.

The volume fractions of total insertion and stitch tibers:
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Vi

Vi = Ve Ki (5-43)
Y
V$=V§ﬁ; (5-44)

The volume fractions of all fibers in x, y, z, and +8 directions:

Ki-Vix + xs - Vgsx

Vi = Ve (5-45)
Ki-Viy+ xg - V

Viy = i lyvc s Vsy (5-46)
Kg -V

Vi = ———2 Ve = (5-47)

Ki-Visg + X5 - Vs=+p
Visg = Ve (5-48)

The overall fiber volume fraction of the MWK fabric preforms:
Vi=Vii+ Vi, or (5-49-a)
Vi= Vix+ Viy + Viz + Vtsg (5-49-b)

Percentages of insertion and stitch fibers to total fiber volume:
Vi;
v, = vf—' 100% (5-50)

Vi
Vg =vf§‘ 100% (5-51)

5.3.8 Geometric Limitation

With the geometric model established. one can now proceed to examine the geometric limits
of the MWK structure. One important factor to be considered in the design and
manufacturing of fabrics is the yarn jamming condition in fabrics. Yam jamming condition
is a geometric boundary condition under which all the yarns are touching each other,
resulting in the tightest possible structure. The boundary condition which defines the
limiting geometry of the MWK fabric can be summarized by Egs (5-52) to (5-54):
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X 2 wy + ds (5-52)
Y2wx+2-dg (5-53)

X - sind + dg (1 +cos0) = wag (5-54)

Combining with Eqgs (25) and (26), Egs (52) to (54) become:

> max 1+d—s Wi+g -ds (1 +cosB) (5-55)
¢X— ’ wy' Wy~Sin6
2.d
oy 2147 = (5-56)

Egs (55) and (56) serve as the criterion for yarn jamming, which not only gives the
boundary condition for the geometric model, but also defines the important processing
limit. In order to measure the degree of the fabric tightness, a processing parameter - the
tightness factor n is introduced:
(1438

n-= o <1 (5-57)
Clearly, the higher is the tightness factor, the more compact the insertion yarns are within
the fabric structure. When n = 1, the unit cell has a minimum dimension in X direction, and
the fabric has the tightest structure at an given angie of bias yamns. After determining the
value of the tightness factor n, the orientation angie of the bias yamns (8), and the ratio of
stitch-to-insertion yarn linear density (As/Aj) must be so selected that both Egs (5-55) and
(5-56) are satisfied.

5.3.9 Results and Discussion

Using the equations developed in the analysis. we have established the key relations
between process variables and fabric geometry. The results of the geometric modeling can
be represented in many ways, and the selection of relations to be evaluated depends on the
specific technical need. We have focused on the overall fiber volume fraction (Vg), the
percentage of stitch fibers (vs), and the geometric limit to describe the MWK structure. The
key process variables include the orientation angle of bias yarns (8), the ratio of stitch-to-
insertion yamn linear density (As/Ai), and the fabric tightness factor (n),

103



The relationship between these geometric parameters and process variables is shown in
Figures 5.12 -5.14, using Egs (5-14) to (5-57). In our calculations, we assume that tricot
stitch is used, fiber material and fiber packing fraction are the same for all insertion and
stitch yamns, i.e., x = x; = xs and p = pj = ps; and all the insertion yarns have the same
linear density and width-to-thickness aspect ratio, i.€., Aj = Aix = Ay = Aisg and fi = fix =
fiy= fize.

5.3.10 Effect of yarn linear density ratio on fiber volume fraction.

The fiber volume fraction relation in Figure 5.12 shows that for the fixed parameters
selected, only a limited window exists for the MWK fabric construction. The window is
bounded by two factors: yam jamming and the point of 90° bias yarn angle. Fabric
constructions corresponding to the curve marked "jamming" are at their tightest allowable
point, and constructions at the 8 = 90° curve have the most open structure. When 8< 30°,
jamming occurs in the whole range of yam linear density ratio from zero to infinite. When
8 is in the range of 30° to 40°, the fiber volume fraction decrease with the increase in yarn
linear density ratio until jamming occurs. When 8 = 45°, the fiber volume fraction
decreases with the increase in yarn linear density ratio to a minimum at about I/]; =1, and
starts to increase until jamming occurs. When 8 2 60°, the fiber volume fraction has the
same trend as when 8 = 45°, but yarn jamming never occurs. The fiber packing in the
yamns, taken as .75, limits the maximum fiber volume fraction in the fabric.

5.3.11 Effect of fiber orientation on fiber volume fraction.

The fiber volume fraction is plotted in Figure 5.13 against the orientation angle of bias
yarns for seven levels of the fabric tightness factor. It can be seen that for a given tightness
factor. the fiber volume fraction decreases as the bias yarn angle increases. Atn > 1, yam
jamming always occurs. Atn =1 and 8 = 50°. the fabric has the tightest structure
(maximum fiber volume fraction) for the parameters indicated in the caption. At lower
levels of n, smaller bias yarn angles are possible. but the fiber volume fractions also
become smaller.

5.3.12 Effect of yarn linear density ratio on fractional stitch fiber volume.

Figure 5.14 shows the percentage of tricot stitch fibers as a function of the ratio of stitch-
to-insertion yarn linear density. The possible range of bias yarn angle is from 30° to less
than 90°. As can be seen in Figure 5.15, the stitch fiber percentage increases as the yarn
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linear density ratio increases, but decreases as the bias yarn angle increases. The process
window of v, is bounded by two curves as shown in Figure 5.14. The upper bound is
given by the yarn jamming limit, and the lower bound is reached at =90°. This provides a
guide to determine the yam linear density ratio to achieve a required stitch fiber percentage
for a given bias yarn angle. For example, if we want to fabricate a MWK fabric preform
which has a 10% of stitch fibers and 45° of bias yarn angle with other parameter being the
same as given in the caption of Fig.5.2. the ratio of stitch-to-insertion yarn linear density
required is about 0.15 as can be read directly from Figure 5.14.
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Figure 5.12 Fiber volume fraction versus ratio of
stitch-to-insertion yarn linear density (tricot stitch,

k=0.75,p = 2.5 kg m-3, fi=5, and n = 0.5).
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Figure 5.13 Fiber volume fraction versus bias yarn
orientation (tricot stitch, x = 0.75, p = 2.5 kg m-3,
fi=5, and 1s/1i = 0.1).
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Vs (%)

Figure 5.14 Percentage of stitch fibers versus ratio of
stitch-to-insertion yarn linear density (tricot stitch, x =
0.75, p = 2.5 kg m-3, fi =5, and n = 0.5).
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6.1 Implementation of the Geometric Model for pre-form design

The geometric model is implemented on a Sun 3/160 work station using C language. The
computer code has a modular structure, each module performs a clearly defined function.
New modules can be added to increase the capabilities of the code. Current capacity of the
code include the computer simulation of the 3D braided structure (3DB) and the Multiaxial
Warp Knit (MWK) structure.

The simulation is divided into stages. In stage 1, a group of modules, which were compiled
into an executable file named preform generator, is executed. The processing and/or
geometric parameters are input from keyboard. Based on the logic described in earlier
chapters, the yarn path is determined and a device independent, neutral graphics file is
written. In stage two a model depictor converts this neutral data files into screen images.
The Sun graphics library calls are used to draw the graphics primitives. The logic flow of
different modules are given below. The stage 1 is device independent. The data files after
stage one are written in ASCII text so that the files are transferable from one computer

system to the other and all the modules need not to be run on the same machine.

e i
Para
Geo — _ Data File

¥

Fig. 6.1 The Simulation Engine
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6.1.1 The Preform Generator

Current capabilities for preform generation include the 3D braid and the MWK. The
computer codes to perform the preform generation were developed in the C computer
language. C is a powerful language and is available in practically all unix based
workstations. The codes are portable with minimal effort and hence are hardware
independent. The basic principle of preform generation is to identify a number of key points
along the yarn trace and then to pass a yarn through the keypoints.

Pref ion for 3D braid
The keypoints for the 3D braided preforms are generated from the machine motion. The
yam trace is determined by taking keypoints along the machine motion and then passing a
B-spline along the keypoints. The yarn path is simulated such that it assumes a shape that
minimizes the energy of the system. To accomplish this additional keypoints along the yarn
center line is generated. These keypoints through which the B-spline passes are called knots

in spline vernacular. The details of the yarn path modeling are given in Chapter 3.

Once the yam trace is established the yam cross-section is taken as a input and it is swept
along the trace to generate the solid yarn. The twist of the yam at the turning point is
calcuiated. A neutral. device independent graphics file is generated for later rendering by a
depiction program.

The keypoint generaton for 3-D braided preform is accomplished by 3dbraid. The default
name for the output the intermediate data file is movement.dat but it can always be
renamed. Once the yarn-path is generated the solid yarn is built along the path by calling the
module build_yarn. The graphics output of this stage is written in neutral graphics file.
The default name for the device independent graphics file is n.dat but is usually renamed to
represent the geometry it renders.

o 2 {on for MWK
The keypoint trace for the MWK structure follows the same principle as 3-D braids,
although the actual implementation invoives a few more steps. The added complexity arises
from the fact that the MWK structure consists of both insertion and stitch yarns that have to
be considered separately. The keypoints for the stitch yarns are generated by mwk. The
keypoints for the insertion yans are selected by observation. The body around the trace of
insertion yam is generated by the program xybuild. the body around the trace of the stitch
yarn is built by build_yarn (same program as used for the 3D braid). The theory of
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selecting the keypoints is given in Chapter 3 and the details of the implementation is given in
the user manual section of this report.

6.1.3 The Model Depictor

The neutral graphics data file generated by the model generators 3dbraid (for 3DB)or
mwk ( for MWK) in conjunction with build_yarn and/or xybuild, is rendered on the
computer screen at this stage. The depiction program used is called render. The depiction
program is more than just a image renderer, it can also manipulate the image by rotating it
for different views and produce section diagrams by passing a cutting plane through the
structure.

The rendering program reads in the neutral graphics file and depicts it on the screen. While
the rendering logic is similar for all devices the actual subroutine calls are particular to the
hardware used. In the current project the hardware used to render the model is a Sun 3/ 160
workstation. The workstation is equipped with a Graphics Processor (GP). Sun 3/160 is
equipped with a 8 bit color display. The value of each pixel serves as an index to a
colormap table. This techniques allows the mapping of up to 16 million colors. At anyone
time the 8 bit monitor can however display up to 256 colors simultaneously.

The rendering of the neutral graphics file is accomplished by fully utilizing the SUN
systems SunView GUI (graphics user interface). SunView is Sun Microsystems
proprietary system. It supports interactive graphics based applications running within
window environment. The driving engine for the renderer is render. The use of the
modules 3dbraid. mwk, build_yarn and render are described in section 6.1.4. The
code is listed in Appendix A.

6.1.4 Installation of Software on a SUN workstation.

The software is available on a SUN QIC 24 9 track data cartridge in tar format. To install
the software on to a SUN workstation the carntridge is to be placed in the drive and the files
to be extracted using the following command:

tar -xvf /rst0/nasal3d.tar

rst0 is the drive name and may vary from system to system. This will automatically create
the necessary subdirectories and install the code.
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The program is supplied as executables that will run on a SUN 3/160 workstation. To
obtain copies of the program contact FMRC at the address on the cover page.

6.1.5 Using the modeling software - User Instructions

Overview

The Simulation takes the following three steps to complete:

Step 1: Depending on which preform structure (either the 3d braid or the Multiaxial warp
knit) is to be depicted, the modules 3dbraid or mwk is invoked to generate yarn

keypoints. The default name of the intermediate output after this step is the ASCII text file
movement.dat for 3dbraid and outfil for MWK. '

Step 2: The solid yarn is built around the yarn trace using the module build_yarn and/or
xybuild. The defauit name of the output file from this step is n.dat.

Step 3: The neutral graphics file generated is then rendered on the screen by the module

render.

In the rest of the section step by step user instruction to generate yarn keypoints for a simple
3d braided structure and a simple Multiaxial warp knit structure is given. In the following
section all the user commands are described in detail for use as a reference.
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Fig 6.2. The Sun 3/160 Key Board
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1. After the software is installed, the model generation is started by typing
3dbraid <Retum>

The user will be prompted for the number of tracks and number of column information. The
queries and input are shown below. The user input is bolded.

How many tracks? 4 <Return>

How many columns? § <Return>

Once the track and column information is input the user is prompted for the number of
movements to be simulated. For 4-step braiding, 4 movements complete a cycle. The final
prompt is for takeup distance.

How many movement?2 <Return>
Distance?1 <Enter or Retum>

The input is checked for loom size. Currently the maximum allowable loom size is 50x50. If
either track or column exceeds the allowable value the input is rejected and the user is
prompted again.

Loom too big! # of track or # of column should be less than 50.

Try again!
How many tracks?

The data file generated by this step is named movement.dat. The data file for the example
inputs shown is appended in Appendix A2. The trace of the yarn path is recorded in
movement.dat .

2. Once the movement.dat is generated . the program build _yarn is used to place a
solid yarn along the trace. Proper yam twist at changeover points is also incorporated at this
point. The task is started by typing

buiild_yam <reum>

The user is prompted for the geometry of the yamn. The cross-section is modeled as an
ellipse and the user is input for the major axis and the minor axis. For a circular cross-
section, the user needs to input the radius twice. An example session is shown below.
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build_yarmn movement.dat<return>
Yam radial 1?7 0.5<return>
Yarm radial 2? 0.25<return>

The output is a neutral graphics file in text format and is automatically named n.dat
(included in Appendix A2).

It is important to note that steps 1 and 2 do not necessarily has to be carried on the Sun. The
user can run the program at his computer of choice and transfer the output n.dat to the Sun
for graphical rendering.

P i - I
The preform generation for the MWK follows similar principles as the 3Dbraid.

1. The first step is to generate the keypoints for the stitch yam. This is done by typing
mwk. On starting the mwk the user is taken through a series of queries for the processing
parameter. A sample query is shown below.

mwk <return>

Enter # of insertion yam/unit length
2 <return>

Enter the angle (degree) of bias yarns
40 <return>

Enter the radius of the insertion varmn
4 <retum>

Enter the radius of the stitch yam
125 <retumn>

Enter the radius of the stitch loop

.2 <return>

color of the sttch vam: 1. 2, 3, 4

1 <return>

2. Once all the necessary input is given to the computer an intermediate outfil is generated.
This outil records all the keypoints along the trace of the stitch yarns.
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3. Next step is to build the trace of the insertion yams. The insertion yarns are all arranged
along straight lines and hence the two end points of each yarn are taken as the keypoints.
The user needs to know the number of insertion yarns he or she needs to plot and then
calculate the coordinates of the end points of the trace. The user then edits a small file,
outfil2, with all the keypoints. A sample outfil2, file is shown below.

9120

10

0.0 0.5 0.225

1.0 0.5 0.225

10

0.0 0.5 0.225

1.0 0.5 0.225

10

0.0 1.5 0.225

1.0 1.5 0.225

290

0.0 0.0 0.625

0.0 2.0 0.625

290

1.0 0.0 0.625

1.0 2.0 0.625

345

0.0 0.0 1.025

1.0 1.0 1.025

3 45

0.0 1.0 1.025

1.0 2.0 1.025

445

1.0 0.0 1.425

0.0 1.0 1.425

4 45

1.0 1.0 1.425

0.0 2.0 1.425

The data is entered in free format. The first line has two elements. The first element denotes
the total number of yams to be plotted the second number denotes the number of sections
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each yarn is to have. The more the number of section the smoother is the yamn but at the
expense of longer computer time. After the first line there is a three line block of data for
each line. The first line in each block denotes the yam color and the second number the
orientation of the yarn. The remaining two lines give the starting and end point coordinates.
In the sample file the data is prepared for nine insertion yarns.

4. The body is built now around the yarn traces. The program build_yarn is used to build
around the stitch yarns. The build_yarn is the same program as used to build the 3dbraid
yamns. A modified version of build_yarn, named the xybuild is used to build body
around the trace of the insertion yarns.

The programs are started by typing
build_yarn outfil <remrn>
my n.dat m.dat

xybuild outfil2 <return>

The user dialog is very similar to that described for build_yarn in the section for 3Dbraid
and the user 1s referred to that section. The default output from the code is n.dat . So care
should be taken to rename the n.dat generated by build_yam before xybuild is run or the
original n.dat will be overwritten.

Once the two data files m.dat and n.dat are generated they are combined to one file. Each
of the tiles have two header lines which contain important information that is needed for
successful combination. A sample header for n.dat is shown below.

9 6462 6480

1.2000 -0.2000 2.1414 -0.1414 1.5982 0.0518
718 720

0.000000 0.700000 0.225000

Each file contains one block of data for each yarn. Each block can be identified by its
header line which contains only two integers. In this example file the block header file starts
with the integers 718 720. The first block from m.dat contains only one block of data. The
first block of n.dat is replaced by the data from n.dat. The second line of n.dat is now
compared to second line of m.dat and modified as explained below. The second line
contains the information of the three-dimensional parallelepiped that encompasses the MWK
structure. It is defined by inputting the range of x, y and z as shown:
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Xmax Xmin Ymax ymin zmax zmin

1.2000 -0.2000 2.1414 -0.1414 1.5982 0.0518

The xmax, xmin, ymax, ymin, zmax and zmin of the two files are compared and the
maximum value for xmax, ymax and zmax and the minimum values for xmin, ymin and
smin are chosen. These values are used to modify the second line of n.dat. The neutral
graphics file is now ready for rendering.

Graghical Renderi

The graphical rendering program is developed for a sun workstation environment. The
program is highly interactive. Initial input is by Keyboard but once the image is drawn on
the screen. further manipulation is done by the Sun Mouse.

The optimum display is obtained when the SunView window covers the whole screen. To
ensure this the user has two choices.

(a) The user can click at the corner of the active screen and select the full screen window
option of the popup menu. Some useful SunView window management techniques are
discussed in Section 3.

(b) The user can run the rendering program without starting SunView. In this case the
rendering program starts SunView and makes the active window span the whole screen.

To start the processing of n.dat neutral graphics file. type

model n.dat <return>

input cut plane normal 0.1 0.1 0.1 <return>

At this point the control buttons for image manipulation pops up on the right side of the
active window. The screen is shown in Fig. 6.3.

After the program starts the image is manipulated by the control strip. Different image
manipulation functions are performed by piacing the cursor at the appropriate button and
depressing the middle mouse button. A schematic of the Sun Mouse is shown in Fig. 6.4
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Fig. 6.3 Screen Display during Simulation
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Fig. 6.4 - The sun three button mouse.

In the rendering program only the left button is used. The right button is used by
SunView to change the size of the windows and to exit from SunView. A schematic of the
control strip is shown in Fig. 6.5. As can be seen the control strip offers numerous options.
All these options are explained in the next section. In this session the minimal steps
necessary to render the neutral graphics file is described.
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Fig. 6.5
Schematic of the
Control Strip

1. The first step is to select a bounding parallelepiped inside
which the model will be drawn. The user points and clicks
at the option Outbox. A wire frame parallelepiped is drawn
on the screen.

2. The user then controls the size of the parallelopiped by
clicking the viewing buttons. The R, L, U and D
buttons move the viewpoint to right, left, up and down
respectively. The corresponding lowercase buttons perform
the same function but at a slower rate and hence can be used
to fine tune the position of the box. The Larger, Smaller,
1 and s buttons are used to increase the size of the box.
Larger and Smaller buttons increases or decreases the size at
a higher rate than the 1 and s buttons respectively.

3. After the box is placed the yarn can be drawn by using
one of the image buttons. The X-Frame button draws a
wire frame image of the yarn. The Solid option draws a
hidden line solid model.

4. The image can now be saved as a raster file by using the
Move Rast button.

5. To view a cross-section along a cutting plane the user
uses the cutting in conjunction with the Forward and
Backward buttons. While the cutting plane is
predetermined, it can be moved along its normal by the
Forward and Backward buttons. The position of the
plane can be seen on the display. Once the cutting plane is
positioned, the cross section is displayed by clicking on the
cutting button.

121



6.1.5 Command reference of the image manipulation controls

The image manipulation commands are cataloged below. To select (or use) any of the
commands the user needs to position the cursor in the appropriate box and press the left

mouse button.

The Image Buttons
These buttons Control the Type of Image Generated by the

-

Selecting the Line button draws a wire frame mesh of the

model within the bounding box.

X-frame

This button is not in use at this time.

Qutbox

Draws the bounding box for the model.
Solid

Draws a hidden plot model of the yarn.
Reset

Resets the viewing parameters to default and erases the
screen.
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The_Viewing Butt

The viewing buttons are used to position the outbox to look
at the unit cell from different aspects.

Randr

The R button is used to rotate the outbox counter
clockwise. The r button is used to rotate the outbox in the
same direction but at a slower rate.

Landl
The L button is used to rotate the outbox clockwise. The 1

button is used to rotate the outbox in the same direction but
at a slower rate.

Uandu

The U button is used to move the outbox up in the positive
z direction. The u button is used to move the outbox in the
same direction but at a slower rate.

(_Larger ) The Size Buttons

\/
A

Smaller

The size buttons control the size of the outbox

Larger

The Larger button increases the screen size of the outbox.
The effect is to zoom in along the viewing line.

Smaller
The Smaller button decreases the screen size of the
outbox. The effect is to zoom out along the viewing line.

land s
The I and s buttons are the slow speed counterparts of the
Larger and Smaller buttons.
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Backward
Cutting

Forward

Menu Hid
The Menu Hid button hides the menu. This is useful for
taking snapshot of the screen.

Sw Direct

This button is not in use

The Cutting Buttons

Backward

The Backward button moves the cutting plane along a
normal to the plane in the negative direction.

Forward
The Forward button moves the cutting plane along a
normal to the plane in the positive direction.

The File Buttons

The file buttons manipulates the sun raster files.

Get Rast
The Get Rast button reads are raster file and displays it
on the screen.

Move Rast
The Move Rast button creates a raster file with the
current screen image.

Load Rast
The Load Rast button displays the contents of a raster file

Restore
The Restore button restores the position of the cutting
plane
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The Exit Button
Selecting the exit button quits the program and closes the
model window.

6.1.6 Starting the Rendering program inside SunView

The rendering code when started from outside SunView automatically invokes SunView.
That is the easiest way to start the code. On the other hand starting the code from inside the
code has the advantage that the user can predetermine the size of the window in which the
model will be drawn. The user can also have other windows open that he can use in
conjunction with running the program. In this section limited instructions are given to
manipulate the windows for such a purpose. For exhaustive discussion on the SunView
environment the user is referred to (6.1.2 ].

To start the rendering program place the cursor in a command or shell window. Fig. 6
depicts a typical SunView desktop with a open shell window. The frequently used
techniques are described below

Opening a New Shell
New Shell Windows are opened from the SunView menu. SunView menu is opened by

clicking the right mouse button when none of the windows are active. From the SunView
menu selecting the item Shells pops up a new Shell.

Resizing the Shell Window

The size of the shell window determines the portion of the screen that will display the
model. To change the size of the shell window the cursor is placed on the top window
border. Pressing the right mouse button pops up a Frame Menu. The Resize menu item is
used to control the window size. The Resize is a pull right menu. The choices offered by the
menu are constrained and unconstrained resizing, zoom and Full Screen. The cursor is then
placed near the corner or frame border. Pressing the middle mouse button the bounding box
can be adjusted to requirement. Zoom expands the window vertically to maximum and Full
Screen expands the window to encompass the whole screen.

Exitine_SunVi
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To exit SunView the SunView menu is popped up and the item Exit SunView is selected.

6.2 Application for Engineering Design

The visualization of the architecture on the computer allows us to look at the model without
going through the time consuming and expensive operation of actually making a prototype.
Once a textile pre-form is decided upon it can be readily discretized into a finite structure.
The software developed can allow us to connect it to a structural analysis program.

6.2.1 Automesh Generation

The graphical rendering of any shape requires the object to be discretized into a finite number of
polygons. The larger the number of polygons is, the realistic the depiction is. This discretization
can directly be used to obtain a finite element model of the unit cell. The polygons that describe the
surfaces are taken as a single element and the triangular elements Each triangle is systematically
broken up into four smaller triangles. Adjacent triangles are then combined to form as many
quadrilateral elements as possible.

6.2.2 A Case Study

As an example of applicaton of the modeling techniques in engineering design we present a work
carried out at the fibrous materials research center. The center was called upon to design and
fabricate flanged tube for a helicopter. The flanged tube was designed to transmit torque from
engine to the hub of a helicopter blade assembly. The tube was to be made of composite material.
It was suggested by the client to use IM7-W 12k graphite fiber and to use PRS00 resin as the
matrix. The matrix and fiber properties are given in Table 6.2

Properties IM7-W PR500
Tensile Strength(Ksi) 769 8.3
Tensile Modulus(Msi) 44 .507
Tensile Strain(%) 1.79 1.9
Densitv(g/cc) 1.78 1.245
Tg (°C) 205
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The flanged tube was subjected to static bending and fatigue loading. The static loading comprised
of 771,400 in-1b torque and 38,750 in-1b moment; the fatigue loading was 175,000+175,000 in-1b
torque and (127,680 in-Ib moment. The torque and bending moment occured at the same time.

The fabrication process included first layer 2-D braiding on tubular flange, thickness buiit-up with
woven fabrics and then overbraiding on tube and flange for final process. The braiding angle of
the flange tube is £45°. The fiber volume fraction is about 50%.

Geometric Modeling

In braiding operations, all braiding yarns move with their carriers and wrap around the surface of
the mandrel. One group of braiding yarns moving clockwise forms an angle of +8 with the
mandrel axis; the other group of braiding yarns, moving anticlockwise, has an angle of -8. These
two groups of braiding yarns (8) are interlocked, forming a biaxial fabric on the mandrel.

Braids can be formed with different yam interlacing patterns in a manner similar to that of woven
fabrics simply by changing relative position of carriers on the track ring. If one bias yarn
continuously passes over and under one yarn of the opposing group, the pattern is designated as
1/1 (or diamond) braid. Other simple interlacing patterns in common use include 2/2, 3/3, 2/1 and
3/1 braids. After examing each pattern and considering the resulting volume fraction and effective
moduli the 2/2 biaxial braid was chosen for the flanged tube. The effective properties were then
used in a finite element model to complete the design process.

Finite Element Modelling

The finite element analysis(FEA) is performed in order to examine the stress distribution in the
flanged tube when it is under the operation environment. The FEA procedures include the
definition of the geometry, the boundary conditions, the material properties and element type in the
analysis. In this project, 2-D shell element is chosen for the finite element analysis. In the analysis
the total number of nodes is 260, and the total number of elements is 240. The created geometry
and the element meshes are shown in Figure 6.6 from different views.

The element type used for the finite element analysis is nonlinear composite quadrilateral
shell element. This is a 4-node muti-layer quadrilateral shell element with bending
consideration, which is capable of analyzing three-dimensional structures. Six degrees of freedom
(three translations and three rotations) per node are considered.
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view : [001] view : [100]

view : [111]

Figure 6.6 The geometry and element meshes of the flanged tube.
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For the boundary conditions, fixed dispacements at the end of tube are imposed, while the torque
and bending moment are applied on the edge of the flange according to the provided loading
environment. The loadong conditions are illustrated in Figure 6.7. Both the torque and the
bending moment can be equated by a set of force components uniformly distributed over the nodes
on the edge of the flange. For the purpose of simplicity, only 9 inches of the tube in length is
considered in the analysis.

Boundary Conditions -- Load
Moment y y
-
z ]
L
z el
Torque y
F
F
T=Fxr
z
F
F

Figure 6.7 The loading boundary conditions of the flanged tube.

The stiffness matrix of the flanged composite tube obtained using the Fabric Geometry Model is
given as follows:
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~6.15488027 0 0 0 -
4886.15027 0 0 O
027027133 0 0 O

Msi

0 0 0 063 0 O

0 0 0 O0 063 O

- 0 0 0 0 0 513~

The stiffness matrix can be used as input into the COSMOS finite element package to compute the
stress and displacement distributions of the flanged composite tube. The results, such as ox, Oy,

Oz, Txy, Tz, Tyz, von-Mises stress, Uy,Uz and resuitant displacement Utot, are used to see if any
material or design limit is exceeded. As an example of the von Mises stress fringes are presented in
Figures 6.8. From the figures, the maximum stress occurs in the tube portion and the value of the
maximum stress does not exceed the material limit.
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Figure 6.8 The contour plot of von Mises stress in the flanged tube.
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Appendices
Al Program
Model Generators

3 D BRAID - MOVEMENT GENERATOR

/* Movement Generator */

# include <math.h>
#include <usercore.h>
#include <stdio.h>

#define SIZE 50
#define FASLE 0

static short x_matrix{SIZE][SIZE][2],y_matrdeIZEISIZEI2],initial[SIZE][SIZE];
static int n_track,n_column;
static int movement,right,up,track,column;
static int yarn_index;
static float dist,yarn_locat{SIZE](3];
int yarn_color,n_pair,n_knot;
short yarn_matrix{SIZE][SIZE][10];
struct {

float x;

float y;

float z;

Jknotxyz{100};
struct {

short index0;

short index1;

short i;

short j;

short ii;

short jj;

short flag;

}knot{100];

main()

{

int i,j,k,ii;
FILE *fptr;

again: printf{"\nHow many tracks? ");
scanf{"%d",&n_track);
printf{"\nHow many columns? ");
scanf("%d",&n_column);
printf("\nHow many movement?");
scanf("%d",&movement);
printf{"\nDistance?");
scanf{"%f",&dist);
yarn_index=n_knot;
if (n_track>SIZE | | n_column>SIZE )
{
printf"\nLoom too big! # of track or # of column should be less than 50. \n Try again!™);
goto again;

}



build_xy_matrix();
print_xy_matrix();

yarn_index=0;
for (i=0ji<n_track:i++)
for(j=0;j<n_columngj++)
if (y_matrix(il{j{0] !=0 | | x_matrix[i}{j}{0] !=0)
{
yarn_index++;
initialfifjl=1;
}
for (i=0;i<n_track;i++)
{
for(j=0j<n_columnyj++)
printf{("%d" initial[il(j});
printf{"\n");
}
fptr = fopen("movement.dat”,"w");
/*fprintflfptr,"%d %d\n",yarn_index,movement/2+1);
*/

fprintf(fptr,"%d %d\n",yarn_index,movement+1);

movement++;
yarn_color = 3;
yarn_index=0;
for (i=0:i<n_track;i++)
for (j=0;j<n_column:j++)

if (initial[i][j] !=0¥* if initial(i][jl=1, it is yarn! %/
{
for ( k=0;k<anovement:k++)
{
if (k==0)

{
track=yarn_locat(k][2]=i+1;
yarn_locat{k][1]=0y* y coord. is ZERO ¥/
column=yarn_locat{k}[0]=j+1;
right=0;
up=0;

}
else

{

if (k%2 !=0Y* move track first */

move_track(k);
else
move_column(k);

}

yarn_locat(k][1]= k*dist ;
} /* end of movement */

printf("yarn # %d\n",yarn_index);

fprintflfptr,”"%d\n",yarn_color);
yarn_color= (yarn_color==3) ? 4 : 3;



for (k=0;k<movement;k++)
*if (k%2==0)*/

{
printf{"%2.4f %2.4f %2.4f\n",yarn_locat[k][0],yarn_locat{k X 1],yarn_locat{k]{2]);
fprintf(fptr, " %2.1f % 2 .1f
%2.1f\n",yam_locat[k][O],yam_locat[k][1],yam_locat[k][2]‘0.7);
}

fprintfifptr,"\n");
yarn_index++;

}

} /* end of yarn location */
initial_yarn_matrix();
i=0;
for (k=0;k<movement-1;k++}
iftk%2) shift_track(i,i+1);
else shift_column(i,i+1);
k%2 && k =0 |
n_pair = 0;
knot_search(i-1,i+1);
pick_knot(n_pair k*dist);

i+

}

for (i=0:i<n_knot;i++)
printf("\n%2.2f %2.2f %2.2f " knotxyz{ilx knetxyzil.y, knotxyz{il.z);
fprintf{fptr,"%d\n",n_knot);
for (i=0;i<n_knot;i++)
fprintf(fptr,"\n%2.2f %2.2f B2.2A
knotxyz[il.x, knotxyz[i).y, knotxyz{il.z);
close (fptr);
} /* end of main program */

move_track(k) int k;
{
if (right==0)
{/* move right */
column=yam_locat(k][0]=colmnn+x_matrix[track-1][column-1][right];
yarn_locat{k][2]=yarn_locat{k-1](2];/* keep Z direction */

right=1;
}

else/* move left */
{column:yam_locat[k][0]=column+x_matrix[track-1][column-1][right];
yarn_locat{k][2]=yarn_locat{k-1][2];/* keep Z direction */

right=0;
}

} ™ end of move_track  */

move_column(k) int k;
{
if (up==FALSE)



(
track=yarn_locat[k][2]=track+y_matrix{track-1l{column-1}up];
yarn_locat[k])[0]=yarn_locat(k-1][0};

up=l;

s )
:,rackayam_locat[k][ﬂ=t.rack+y_matrix[track-l][eolumn-1][up];
yarn_locat{k][0]=yarn_locat[k-1]{0];
up=0;

) /* end ot! move_column */

print_xy_matrix()
{
intijk:

printfi™\n");
for (k=0;k<2;k++)
for(i=0;i<n_track;i++)
{
if (k==0)
{
for(j=0j<n_columngj++)
printf{"%2d " x_matrix{i](;1{0]);
printfl"\n");
}
else
{
if (k==1 && i==0) printf"\n");
for(j=0jj<n_columnj++)
printf{("%2d " x_matrix[i]GI[1]);
printf{"\n");
}
}

printf{"\n");
for (k=0:k<2;k++)
for(i=0;i<n_track;i++)
{
if (k==0)
{
for(j=0;j<n_columnsj++)
printf{("%2d ",y_matrix(i][jI[0]);
printf"\n");
}

else
{
if (k==1 && i==0) printf{"\n");
for(j=0;j<n_columnyj++)

printf("%2d ",y_matrix{i]jI[1]);

printfi"\n");
}

}

) /* end of print x_y-matrix */



build_xy_matrix()
{

for (i=0i<n_track;i++)
for(j=03j<n_columnyj++)
for (k=0;k<2;k++)
x_matrix{i]jlk)=y_matrix[il[jl[k]=initial(i][j}=0;

for(k=0;k <2;k++)
for(i=0;i<n_track;i++)
{
if (k==0)
{
ifli 1=0 && i !=n_track-1 &&i % 2!=0)
for(j=0;j<n_column-1;j++)
x_matrix(iljl[0}= 1;
if (i !=0 && i !=n_track-1&& i % 21=1)
for (j=1;j<n_column;j++)
x_matrix{i]Jjl[0)= -1;
}
else
{
ifli 1=0 && i 1=n_track-1 && i1 % 2!=0)
for(j=1;j<n_columng++)
x_matrix(i][jl[1}= -1;
if (i 1=0 && i !=n_track-1 &&i % 2!=1)
for (j=0;j<n_column-1;j++)
x_matrix{i[jl[1}= 1;
}
} 7* end of build x_matrix */

for(k=0k<2;k++)
for(i=0;i<n_column;i++)
{
if (k==0)
{
ifli =0 && i !=n_column-1 && i %2 !=0)
for(j=0;j<n_track-1;j++)
_matrix{jl{il[0]= 1;
if (i 1=0 && i !=n_column-1 && i % 2 !=1)
for G=1;j<n_trackyj++)
y_matrix{jl[i}{0}=-1;
}
else
{
ifli !=0 && i !=n_column-1 && i % 2 !=0)
for(j=1;j<n_track;j++)
y_matrix(jl[i][1}= -1;
if (i '=0 && i !=n_column-1 &&i% 2 !=1)
for (j=0;j<n_track-1;j++)
y_matrix{jlli}{1]= 1;

}
} /* end of build y_matrix */



} /* end of build xy_matrix ¥/

initial_yarn_matrix()
{int i,j,yarn_index;
yarn_index = 1;
for (i=0;i<n_track;i++)
for (j=0;j<n_column;j++)
yarn_matrix{il[j][0] = (initial(i][jl==1) ? yarn_index++ :0;
} * end of initial_yarn_matrix */

shift_track(index0,indexl)int index0,index1;
{int i;
for (i=0zi<n_track;i++)
for (j=0;j<n_columnsj++) yarn_matrix{illjllindex1] =
yarn_matrix{i](jllindex0] ;

for (i=1<n_track-1;i++:
if (yarn_matrix{i][0][index1]1>0){/* RIGHT ¥/
for (j=1;j<n_column;j++)
yam_matrix[i][n_column-jl[indexl] =
yarn_matrix[i][n_column-j-1][index1];
yam_matrix[i][O][indexl] =0;
}
else {* LEFT */
for (j=0;j<n_column-1jj++)
yarn_matrix{i]jllindex1] =
yarn_matrix{il[j+ 1)(index1];
yarn_matrix[i][n_column-1]{index1]= 0;

}

}J/* the next track */
) /* end of shift track */

shift_column(index0,index1)int index0,index1;
{intij;
for (i=0zi<n_track;i++)
for (j=0;j<n_columngj++) yarn_matrix{il{jllindex1] =
yarn_matrix{i][jfindex0] ;

for (i=1:i<n_column-1;i++){
if (yarn_matrix{0]{i]lindex1]>0){/* DOWN ¥/
for (j=1j<n_track;j++)
yarn_matrix{n_track-jlli]lindex1] =
yarn_matrix(n_track-j-1][ijlindex1];
yarn_matrix{0){i]lindex1] = 0;
}

else {* UP ¥/
for (j=0j<n_track-1;j++)
yarn_matrix{jl[illindex1] =
yarn_matrix[j+1][illindex1];
yarn_matrix[n_track-1][illindex1]= 0;

)

}/* the next column */
} /* end of shift column */



knot_search(index0,index1)int index0,index1;

{

int i,j,ii.jj;

for (i=0zi<n_track;i++)

for (j=0;j<n_column;j++){
if (yarn_matrix{i][jllindex1]} !=0 }{
for (ii=0jii<n_track;ii++)
for (jj=0:jj<n_columngj++}
if (yarn_matrix{il[jllindex1]==yarn_matrix{iiljjiindex0] &&
yarn_matrix(ii][jjllindex1}==yarn_matrix{i}fjllindex0] &&
yarn_matrix{iil(jjlindex1] != OX
/*printf("\nPAIR %d
%d",yarn_matrix[i][jllindex1],

yarn_matrix{ii]{jjl{index1]);*/
knot{n_pair].index0 = yarn_matrix{il[jilindex1];
knot{n_pair].index1 = yarn_matrix{ii}[jj{index1);
knot{n_pairl.i =i;
knot{n_pairlj = j;
knot{n_pairl.ii = ii;
knot{n_pair].flag = -1;
knot[n_pair++L.ii =ij;
}

}
}/* end of knot search */

pick_knot(n_pair,y)int n_pair;float y;
{int ijk;
for (i=0;i <n_pair;i++)
if (knot{il.flag == -1}{
knotlil.flag = 1;
for(j=0;j<n_pairj++)
if ((knot(i].index0 ==knot{jl.index0 && knot{j].flag != 1 &&
knot{il.indexi==knot{jl.index1) 1 |
(knotlil.index0 == knot{jl.index1 && knot{jlflag != 1 &&
knotlil.index1 == knot{j].index0)) knot{j} flag = 0;
}
}
for (i=0;i<n_pair;i++)
if (knot[i].flag == 1)}
knotxyz[n_knot}.z = (knot{ili + knot{ilii+2)/2.0;
knotxyz{n_knot].x = (knot{il.j + knot{il.jj+2¥2.0;
knotxyz[n_knot++lL.y = y;
1

MWK - KEYPOINT GENERATOR

/ -
mwk unit cell builder
history:
original development in Fortran -> Dr. Charles Lei
C conversion Anisur Rahman 4/16/93
¥/



#include <stdio.h>
#includse <stdlib.h>
#include <math.h>

#define LOOP 10
#define POINTS_PER_STITCH 33
#define DIMENSIONS 3

int ncolor;
int ind1, ind2, ind3;

float din;

double pi,dx,dy,sqrt2,theta;
double rstitch, rinsert, rloop;
double coor{ LOOP][POINTS_PER_STITCH][DIMENSIONS];

FILE *fp;
main(){

puts (" Enter # of insertion yarn/unit length");
scanf("%f{",&din);
dx=1./din;
puts (" Enter the angle (degree) of bias yarns ");
scanfi"%lg",&theta);
pi = 4.* atan(1.);
theta=theta/180.*pi;
dy = dx * tan(pi/2. - theta);
puts(" Enter the radius of the insertion yarn™);
scanf("%lg",&rinsert);
puts(” Enter the radius of the stitch yarn™);
scanf{"%lg",&rstitch);
puts(” Enter the radius of the stitch loop™);
scanf("%lg",&rloop);
/ *
Compute the geometry within an unit cell
*/
for (mdl = O,mdl = LOOP; ind1++)
for (ind2 =0; ind2 != POINTS_PER_STITCH; ind2++)
for (ind3=0; ind3 != DIMENSIONS; ind3++)
coor{ind1][ind2]{ind3]=0;
coor{0)[0][0]=dx/2.-rstitch;
coor{0)[0][1]=-rstitch - rloop;
coor{0][1][0]=dx/2.-4.*rstitch*(2.*rstitch/dy)-rstitch;
coor{0][1)[2]=-2.*rstitch-(2.*rstitch/dy)*4.*rstitch;
coor{0][2][0]=dx/2.-rloop;
coor{0][2](1]=dy-rloop-rstitch;
sqrt2=sqri(2.);
coor{0][3][0]=dx/2-rloop/sqrt2;
coor{0][3)[1]=coor{0][2]{ 1]+rloop/sqrt2;
coor{0){4][0)=dx/2;
coor{0)(4][1}=dy-rstitch;
coor{0)[5){0]=dx/2.+rloop/sqrt2;
coor{0](5)1}=coor{0}(3](1];
coor{0][6][0]=dx/2.+rloop;
coor{0][6)[1}=coor{0][4][1]-rloop;



coor{0N 7 0)=dx/2.+rstitch+2.*retitch¥(2.*rstitch/dy);
coor{0Y 7N 1)=-rstitch;
coor{ 0 7)[2}=-2.*rstitch;
coor{0X8X 0]=coor{0)[4)[0]+ratitch;
coor{0X8])[1]=-rloop-rstitch;
coor{0J9][0]=dx/2.;
coor{0)[91[1]=dy/2.-rinsert*sqrt2;
coor{0X9)[2)=7.*rinsert;
coor{0][10)(0]=dx/2.;
coor{0)10](1]}=dy/2.;
coor{ 0 10][2)=8.*rinsert+rstitch;
coor{0][11](0]=dx/2.;
coor{0)[11][1]=dy/2.+sqrt2*rinsert;
coor{0][11X2]}=7.*rinsert;
coor{0][12][0)=coor{0](8][0];
coor{0){12]){1])=coor{0][6][1];
coor{0][13][0]=coor{0]{7}{0];
coor{0)[13]){ 1}=coor{0][7]{1]+dy;
coor{0)[13])[2]=-2.*rstitch;
coor{0](14]{0]=coor{0][6](0];
coor{0){14]{ 1]=coor{0][6][1]+dy;
coor{0][14](2])=coor{0)(6){2];
coor{0][15](0]=coor{0](5](0];
coor{0][15][1]=coor{0){5][1]+dy;
coor{0){16]{0]=coor{0][4][0];
coor{0}{16)[1}=coor{0][4]{1]+dy;
coor{0][17][0]=coor{0][3][0];
coor{0]{17)[1]=coor{0][3][1]+dy;
coor{0][18](0])=coor{0][2](0};
coor{0]{18][1]=coor{0][2][1]+dy;
coor{ 0][19])[0}=dx/2.-rstitch-2. *rstitch*(2.*rstitch/dy);
coor{0][19][1)=dy-rstitch;
coor{0][19])[2]=-2.*rstitch;
coor{01[20][0]=dx/2.-rstitch;
coor{0][20][1)=dy-rstitch-rloop;
coor{0][211[0]=coor{0]{9][0];
coor{0][21][1]=coor{0](9])(1]+dy;
coor{0][21][2]=coor{0]{9](2];
coor{0][22][0]=coor{0][10](0];
coor{0][22)(1])=coor{0][10][1]+dy;
coor{0][22][2)=coor{0][10]{2];
coor{0][23][0]=coor{0][11][0];
coor{0][23){1)=coor{0][11](1]+dy;
coor{ 0](23}{2]=coor{0}{11]{2];
coor{0][24}(0]=coor{0]{20](0};
coor{0][24]{1]=coor{0][20)[1]+dy;
coor{0][24][2]=coori0][20][2];
coor{0][25][0]=coor{0][19][0];
coor{0][25)(1]=coor{0][19][1}+dy;
coor{0)[25)[2]=coor{0){19](2};
coor{0)[26]{0]=coor{0]{1])[0];
coor{0][26][1]=coor{0][1][1]+dy*2;
coor{0][26][2]=coor{ 0]{1]{2];

/‘
Write Sun File

*/
fp = fopen("outfil”,"w");
fprintfifp,"1 27\n");



puts(” color of the stitch yarn: 1, 2,3, 4 \n");
scanf{"%d",&ncolor);
fprintfifp,"%d\n",ncolor);
for(ind1 = 0; ind1 != 27; ind1++)
fprintf{fp,"%10.6f %10.6f %10.6f\n", coor{0][ind11[0),
coor{0Xind1]{1),coor{O[ind 1X2]);
}

3D BRAID YARN BUILDER

#include amath.h>
#include <usercore.h>
#include <stdio.h>

#define NC 50

#define NSET 6

#define MAXLINE 400
#define MAXVLINE 5000
#define PI 3.141596

float cp[NCI3];
float em{NC*2]{3];

float bbox{3]{2];
int pi,pj,M.N;

double a{3][3];

float radiall,radial2,u,vx,y,z;
float pp{600001(3];

int index{60000](61,ind:

int count ,nvert,npoly,nzset,nvpzset,countl,total_vert,old_count;

int poly_index,finish_yarn,movement,yarn_color;
int knotk knotn,nc;

float line_vertftMAXVLINE][3];

int line_index{MAXLINE][8],nline,nlvert;
static float cube{8]3]={{0.0,0.0,0.0},

{0.0,0.0,1.0},
{1.0,0.0,1.0},
{1.0,0.0,0.0},
{0.0,1.5,0.0},
{0.0,1.5,1.0},
{1.0,1.5,1.01,
{1.0,1.5,0.0}};

static float pmatrix[44]={{-0.5,1.5,-1.5,0.5},

FILE *fptr;

struct v_p_count{
short v_count;
short p_count;
} v_p_count{600];

main(arge, argv)
int argc;

char *argv{];

{
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{1.0,-2.5,2.0,-0.5},
{-0.5,0.0,0.5,0.0},
{0.0,1.0,0.0,0.0}};



int i,j,ii,ncube;

int k,n,tmp{7},color;

int n_poly_pobj,n_vert_pobj,vert_count,poly_count;
printf"\nYarn radial 1? *);

scanf("%f",&radiall);

printf"\nYarn radial 2? ");

scanf{"%f",&radial2);

poly_index = total_vert = old_count = 0;
finish_yam = 0;

fptr = fopen(argv(1],"r");

facanf{fptr ,"%d",&movement);
fscanf{fptr,"%d",&nc);

for (finish_yarn =0;finish _yarn<movement;finish_yarn++)
{
fscanf{fptr,"%d",&yarn_color);
for (i=0; i<nci++)
fscanf(fptr, %f %f %f",&cplil(0], &cplill 1],&eplil(2]);

ind=0;
/* printf("#%d" finish_yarn); */

/*build_controi_mesh(nc);*/
v_p_count{finish_yarn].v_count=v_p_count{finish _yarnl.p_count = 0;
build_yarn();

}
/li
cell();
>/
close (fptr);
fptr = fopen ("n.dat","w");

for (i=0si<total_vert;i++)

{

if (i == 0)
{
bbox{0){0]=bbox[0][1]=pplill0};
bbox{1][0]=bbox[1][1]=pp{il[1];
bbox{2][0)=bbox[2][1)=pplil[2];
}

else
{
if (bbox{0][01<pplil[0]) bbox{0][0] = pplill0];
if (bbox{0){ 11>pplil[0]) bbox{0][1] = pplil[0];
if (bbox{11[0]<pplil[1]) bbox{1){0] = pplill1};
if (bbox{1){11>pplil(1]) bbox{1][1] = pplill1];
if (bbox{2)[0}<pplil[2]) bbox{2][0] = pp{il(2];
if (bbox{2]l[11>pplill2)) bbox{2][1] = pplill2];
}



fprintfifptr,"%d %d %d\n",movement,poly_index,total_vert):
fprintf(fptr,"%4.4f %4.4f %4.4° %4.4f
%4.41\n",bbox{0][0],bbox{0){ 1],bbox{ 1]{0],bbox( 1][1],bbox{2]{0], bbox{2X 1]);

poly_count = vert_count = 0;
n_poly_pobj = poly_index/movement;
n_vert_pobj = total_vert/movement;

for (i=05i< movement:i++)(

n_poly_pobj=v_p_count(i].p_count;

n_vert_pobj=v_p_count[il.v_count;

fprintfifptr,"%d %d \n",n_poly_pobj,n_vert_pobj);
for ( j=0;j<n_vert_pobj;j++){
fprintfifptr,"%f %f %M\n",pplvert_count][0],

pplvert_count][1],ppivert_count][2]);

vert_count++;

}

for ( j=0;j<n_poly_pobjj++){
fprintfifptr,"%d %d %d %d %d %d\n",index{poly_count]{0],
index[poly_count][l],index[poly_count][2],index[poly_count][3]
,index{poly_count]{4],index[poly_count][5]);
poly_count++;
}
1
i=j=0
fprintfifptr,"%d %d \n",ij);
close (fptr );

} /* end of main */

cell()

{

int i,j,k,ii,ncube,color;
int tmp{7];

float x,y,z;

fscanflfptr,"%d%d",&ncube,&color);

if (8*ncube>MAXVLINE)
{
printf("\n Too many vertices on lines!!");
exit(1);
}
nlvert=0;
for (i=0;i<ncube;i++)
{
fscanflfptr,"%f %f %f",&x, &y, &z2);
for (j=0;j<8;j++)
{
line_vert{nlven][0]=cube[j][0]+x;
line_vert[nlvert][1]=cube{j][1]+y;
line_vert{nlvertl{2]=cube(j}[2]+z;
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nivert++;

}

tmp{0]=5;tmp{1]}=color;
for (i=0;i<ncube;i++)
{
k=i*8+5;
for (j=1;j<4;j++)
{

tmp{2]=j+i*8;
tmp{3)=k;
tmpl4)=k+1;
tmp{5)=tmp(2]+1;
tmpl6]=tmp(2];
k++;

for (ii=0;ii<7;ii++)
line_index[nline](iil=tmpliil;

nline++;

}

tmp(2]=i*8+4;

tmpl3]=tmp(2]+4;

tmpl4]=tmp(3]-3;

tmpl5}=tmp(2]-3;

tmpl6]=tmp(2];

for (ii=0;li<7:1i++)
line_index{nline](iil=tmp{ii];

nline++;

if (nlinesSMAXLINE)
{
printf{"\n Too many lines!!");
exit(2);
}

}
} /* end of cell */

build_yarn()

{
int k,n,ijii;
int tmp[6];
int p_count;
float ppp[10000](3];
float tangent[3],vect01[3],vect12(3] ,b_norm(3],vectpp(3],vect_temp(3],bt[3],
vect_tempO[3],vect_temp1{3];
float dot_product();
float bn[3];
float bend,alpha,pi3},anglel,f,pv{3],twist:
int flag,num,go_back;
float vtt[3],vv[3],vp[3],vect00[3],vt{3],twist_angle,new_bt{3],new_bn[3];
float old_b_norm(3},0ld_bt[3],twist_angle_i;

struct path
{
float bt{3];
int node;



/t

*/

/*

*/

int twist_flag;
}path{200];
k=3 ;
n=ind-1;
p_count=0;
ﬂag = TRUE;

printf{"\nOLD POINTS\n");
for (i=0ji<=nzi++)
printf("%4.4f %4.4f %4.40\n",cm[i}[0),cm{i}[1),cm{i](2]);

for (j=0gj<=nc-4;j++)(
for (u=0.0;u<=.9001;u=u+0.2)
{
cardsp(u,j);
ppplp_count][0]=x;ppp{p_count][1)=y;ppp{p_counti2]=z;
p_count++;
}
}
printf" \nNEW POINTS\n");

=0;
for (i=0;i<p_count;i++)
{
pathli].twist_flag=FALSE;
if (fabs(em{jl[1]-ppplil[11)<=0.05)

{
path{il.node=TRUE;
i

}

else
path{il.node=FALSE;
}

for (i=0;i<p_count;i++)
printf{"%4.4f %4.4f %4.40\n",ppplil(0],ppplil[1],ppplill2]);

count =0;

angle1=0.0;

ﬂag: 1;

for (i=0;i<p_count;i++)

{

printf{” %d\n",i);

if i==0)

/* no bending and twisting at the first points */
{
bend=0.0;
twist=0.0;
twist_angle = 0.0;
for (j=0;j<3;j++)

vect00(jl=pppli+11)-ppplill);
vect01(j)=pppli+21;]-ppplilik
}

cross_product(&bt{0],&vect00[0],&vect01[0]);
u=dot_product(&vect00{0],&vect01{0]);
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printf{"%2.4f \n",u);
cross _product(&b_norm[O],&bt{O],&vectOO[O]);
normalize(&bt{0]);
normalize(&b_norm[0]);
for (j=0j<NSET;j++)
{

alphas= twist_angle + 6.283*YNSET ;
pp(total_vert][0]=ppp[0][0]+radiall*cos(alpha)"bt[O]+radial2“'sin(alpha)"'b__norm[O];
pp{total_vert][1]=ppp[0][1]+radiall*cos(alpha)‘bt{1]+radia12*sin(alpha)‘b_norm[ 1];
ppltotal_vert}[2]=ppp(0]{2}+radial 1‘cos(a1pha)*bt{2]+radialZ‘sin(a]pha)*b_norm[Z];

total_vert++;
count++;
)

} Mendofi==0 ¥/

else
if (i == p_count-1) /* the last one as same as i-1 point */
{
for (j=0j<3;j++)

{
vect00[jl=pppli-11j1-pppli-21G};
;rectOl[j]=PPP[i][j]-PPP{i-I]U];

/*cross_product(&bt[0], &vect00[0],&vect01[0]);
u=dot_product(&vect00{0],&vect01{0]);
printf{("%2.4f \n",u);

cross __product(&b_norm[O],&bt.{O],&vectO1[0]);

normalize(&bt[0]);
*/
bt{0] = ald_bt[01:bt{1] = old_bt{1];bt[2] = oid_bt{2];
cross_product(&b_norm([0],&bt{0},&vect01{0]);
normalize(&b_norm{0]);
for (j=0j<NSETj++)
{

alpha= twist_angle + 6.283*yNSET ;
pp{total_vert][0]=ppp[i][0]+radial1“cos(a1pha)*bt[0]+radialZ*sin(alpha)*b_norm[O];
pp[total_vert][l]=ppp[i][1]+radiall*cos(alpha)*bt{ 1}+radial2*sin(alpha)*b_norm[1];
pp[total_ven][2]=ppp[i][2]+radial1‘cos(alpha)*bt{2]+radjal2"sin(alpha)“b_norm[2];

total_vert++;
count++;
}
} /* end of i==p_count-1  */
else
if (i==1)

{
for (j=03j<3;j++)

{

vect00(j)=ppplilljl-pppli-11{j};

vect01(jl=pppli+11G]-ppplili);

tangent{jl=vect01{j]+vect00(j];

}
cross_product(&bt{0],&vect00{0],&vect01[0]);
u=dot_product(&vect00{0],&vect01[0]);
printf{"%2.4f \n",u);

cross_product{&b_norm(0],&bt[0],&tangent{0]);
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normalize(&bt{0));
normalize{&b_norm([0]);
for (j=0;j<NSET}j++)
{
alpha= twist_angle + 6.283*yNSET ;

ppltotal_vert][0]=ppplil[0]+radial1*cos(alpha)*bt[0}+radial2*sin(alpha)*b_norm([0];
ppltotal_vert][1]=ppplill1]+radial1*cos(alpha)*bt{1]+radial2*sin(alpha)*b_norm(1};
ppltotal_vert](2]=ppplil[2]+radial1*cos(alpha)*bt{2]+radial2*sin(alpha)*b_norm(2];

total_vert++;
count++;
}
) /* end of i=1 case */
else
if ( immp_count-2V* start p-2 case */
{
for (j=0;<3j++)
{

vect00(jl=ppplilljl-pppli-11i);
vect01{jl=pppli+11(j}-ppplilli};
tangent{j]=vect01[jl+vect00{j];

}
*cross_product(&bt{0],&vect00{0],&vect01[0]);*/
bt[0] = old_bt{0];bt{1] = old_bt{1]:bt{2] = old_bt{2];

u=dot_product{&vect00[0],&vect01[0]);
printf{"%2.4f \n",u);

cross_product(&b_norm[0],&bt[0],&tangent[0]);
normalize(&bt{0]);
normalize(&b_norm[0]);
for (j=0;j<NSET;j++)
{
alpha= twist_angle + 6.283*yNSET ;

ppltotal_vert][0}=pppli][0]+radial1*cos(alpha)*bt{0}+radial2*sin(alpha)*b_norm(0];
ppltotal_vert][1]=ppp{il[1]+radiall*cos(alpha)*bt{1]+radial2*sin(alpha)*b_norm(1];
pplitotal_vert][2]=ppplil[2]+radial1*cos(alpha)*bt{2]+radial2*sin(alpha)*b_norm([2];

total_vert++;
count++;
}
} 7* end of i=p-2 case */
else
{/* start the other case */
for (j=0j<3;j++)

vect00(jl=pppli-11[1-pppli-2)(j];

vect01(jl=ppplil[jl-pppli-11(J;

vect12(j]=pppli+11j}-ppplill];
tangent{jl=vect01{jl+vect12{j];

)
cross_product{(&vect_temp0[0],&vect01(0],&vect00{0]);
cross_product{&vect_temp1[0],&vect12(0],&vect01[0]);
twist= dot_product(&vect_temp0[0],&vect_temp1[0]);
if (twist >= 0.99 ) twist = 1.0;
if (twist <= -0.99 ) twist =-1.0;
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if (twist mm 1.0 || twist==-1.0) /*notwisting */
{
bt[0] = old_bt[0};bt{1] = old_bt{1];bt[2] = old_bt{2];
cross_product(&b _norm{0],&bt[0],&tangent{0]);
normalize(&b_norm(0]);
for (j=0;j<NSET;j++)
{

alpha= twist_angle + 6.283*YNSET ;
pp[t.otal_vert][0]-ppp[i][0]+radiall*cos(alpha)*bt[0]+radia12‘sin( alpha)*b_norm{0};

ppltotal_vertl{1]=ppplill 1]+radial1*cos(alpha)*bt{1]+radial2*sin(alpha)*b_norm(1};
pp[total_vert][2]=ppp[i][2]+radiall‘cos(alpha)‘bt[2]+radi312'sin( alpha)*b_norm({2};

total_vert++;
count++;
]
}/* end of no twisting */
else
{ /* handle the twisting first */

twist = acos(twist);
f (twist > (PU/2.0) && twist <= PI) twist -= P1/2.0;
if (twist > PI && twist <= ( PI *3/2.0)) twist = P];
if (twist > (PI *3/2.0) && twist <= ( P1*2.0)) twist = 2*PI - twist;
twist= 0.0;*/
twist_angle= twist_angle - twist;*/
printf (" twist_angle %f %f \n",twist_angle,twist);
cross_product(&bt[0],&vect01[0],&vect12{0]);
u=dot_product(&vect00[0],&vect01[0]);
normalize(&bt[0]);
if (fabs(twist) > (PI/6.0))
bt{0] = -bt{0};
bt{1] = -bt{1];
bt[2] = -bt{2];
}
printf{"%2.4f \n",u);
btf0] = old_bt{0]:bt[1] = old_bt[1];bt[2] = old_bt[2];

cross_product(&b_norm[0],&bt{ 0],&tangent(0]);
normalize(&b_norm[0]);

for (j=0;j<NSET\j++)

{

alpha= twist_angle + 6.283%/NSET;
pp[total_vert][O]=ppp[i][0]+radial1“cos(alpha)*bt{0]+radial2"sin(alpha)*b_norm[0];
pp{total_vert][l]=ppp[i][1]+radiall*cos(alpha)*bt[1]+radialZ‘sin(alpha)*b_norm[l];
pp[tot.al_vert][Z]:ppp[i][2]+radial1"'cos(alpha)*bt[2]+radia12*sin(alpha)‘b_norm[Z];

total_vert++;

count++;

}

)/* the end of twisting  */
}/* end of (i =1 && i != p_count-1) */
for (j=05<3j++)

old_bt{j]=btlj};

old_b_norm([jl= b_normlj};
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)
M endofiloop */

nvert = count;

v_p_count{finish_yarn].v_count = count;
printf{"\n # of V %d",count);

npoly = count-NSET;

nzset=count/NSET;

nvpzset=NSET;

tmp[0]=4;tmp{1]=yarn_color;

/t““““t“‘tt bottuln t‘*“l““'tt“t/
k =nvpzset+ old_count;

tmp{0}=4;

for (i=1;i<nvpzset/2;i++)
{
tmp(2]=i+ old_count;
tmp{3]=tmp(2}+1;
tmpl4}=k-1;
tmp{5)=k;
k—;
for (ii=0;ii<6;ii++)

index{poly_index][ii] = tmpliil;

poly_index++;
v_p_count[finish_yarn].p_count++;

}

/*ti*tt*t*t*ﬁt*‘ Sids #t**t*t*#ti**tt*/

for (i=1j<nzset;i++)
{
k=i*nvpzset+1+old_count;
for (j=1;j<nvpzset;j++)
{

tmp[2]=j+i-1)*nvpzset+old_count;
tmp{3l=k;

tmpl4l=k+1;

tmp{5]=tmp{2]+1;

k++;

for (1i=0;ii<6;li++)
index{poly_index]{iil=tmpliil;

poly_index++;

v_p_count{finish_yarn].p_count++;

}

tmp{2]=(i-1)*nvpzset+j+old_count;

tmp[3]=nvpzset+i*nvpzset+old_count;

tmp[4]=i*nvpzset+1+old_count;

tmp[5]=1+(i-1)*nvpzset+old_count;

for (1i=0;1i<6;li++)
index{poly_index]{ii]l=tmpf{iil;

poly_index++;

v_p_count{finish_yarn].p_count++;



/t“‘.“““t‘t. top RSN EEBERRBEEES ]

k = nvpzset*nzset+old_count;

for (i=1;i<nvpzset/2;i++)
{
tmp(2] = i+nvpzset*(nzset-1) + old_count;
tmpl3] = k;
tmpl4] = k-1;
tmp{5] = tmpl[2]+1;
k~;
for (ii=0;ii<6;ii++)
index[poly_index]lii] = tmpliil;
poly_index++;
v_p_count{finish_yarn].p_count++;

)

old_count + = count;

} /* end of build yarn */

cardsp (u,n)
float u;
intn;

float t{4],pci4];

t{0]=u‘u‘u;

t{1l=u*y;

2=y

3}=1.0;

pc[0]=t.[0]*pmatrix[0][ 0J+t[11*pmatrix( 1][0]+t[2]‘pmatrix[2][0]+pmatrix{3][0];
pdl 1)=t{0]*pmatrix[0][ 1]+t 1]“pmatrix[1][1]+t[2]‘pmat.rix[2][ 1)+pmatrix{3][1};
pc{2]=t[0]‘pmatrbd0][2]+t[1]"pmatr'ur[ 11[2)+t{2]*pmatrix{2][2}+pmatrix{3][2};
pe3]=t[0)*pmatrix{0][3]+t] ll*pmatrix[1][3]+t[2]‘pmatrix[2][3]+pmatrix[3][3];

x = cp{n]{01*pc{0]+cpln+11(01*pd 1)+cpin+2][01*pe{ 2]+cp(n+3)(0]*pel3);
y = cp[n][1]*pe{0]+cpln+11{1]1*pcl 1]+cpln+2){1]*pci2)+cpln+3)[11*pel3];
z= cp[n][2]‘pc[0]+cp[n+1][2]"‘pc{ 1]+cp[n+2][2]*pc[2]+cp[n+3][2]*pc[3];

} * end of cardsp™/

/* Cross_product,dot_product and vector normalization */

/t RSB EREREEEE Dot product t“#t.t“‘i.t‘*‘t‘/
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/* Input the points of vector A and B */
/* Return value : cos(theta) */

#include <math.h>

float dot_product(pva,pvb) float *pva,*pvb;
{
float cos_theta;
normalize(pva);
normalize(pvb);
cos_theta=(*(pva)**(pvb) + *(pva+1)**(pvb+1) + *(pva+2)**(pvb+2));
return(cos_theta);

} /* end of dot_product */

/‘t‘t*"‘tt““t Nomalize*‘*‘t*#"i“tt#‘t‘/

/* Input the point of the vector which will be normalized */

normalize(pv) float *pv;

{
float m;
m= sqri(*(pv)**(pv) + *(pv+1)**(pv+1) + *pv+2)**(pv+2));
*(pv) / =m;
(pv+1) /=m;
*(pv+2) /=m,;
} /* end of vector_normalize */

/*#“*t‘#‘ttt CrDSS product t*tt‘ittt**t‘t/

cross_product(pve,pva,pvb)
float *pva,*pvb,*pvc;

{

normalize(pva);

normalize(pvb);

*pvc = *(pva+l) * *(pvb+2) - *(pva+2) * *(pvb+1);
*(pve+l) = *(pva+2) * *pvb - *pva * *(pvb+2);

*(pve+2) = *pva * *(pvb+1) - *(pva+1) * *pvb;

if (*pve >= -0.001 && *pve <= 0.001 ) *pve = 0.0;

if (" pve+l) >= -0.001 && *(pve+1) <= 0.001 ) *(pve+l) = 0.0;
if (%(pve+2) >= -0.001 && *pvc+2) <= 0.001) ¥Hpve+2) = 0.0;

if ((fabs(*pve) <=0.01 ) && (fabs(*(pvc+1))<=0.01) && (fabs(*(pvc+2))<=0.01))
if (fabs(*(pva))<=0.01)
{
*pve =-1.0;
*(pve+1)= 0.0;
*(pve+2)=0.0;
}

else
{
if (fabs(*(pva+1)) <= 0.01)
{
*pve = 0.0;
*(pve+1)=-1.0;
*(pve+2)=0.0;
}
}
normalize(pve);



} /* end of cross_product */

Model Depictor
#include <usercore.h>
#include <sun/fbio.h>
#include <math.h>
#include <stdio.h>
#include "home/Cai/demolib.h”
#include "model.h”

int nvert,npoly;

float bbox{3][2]);

float planeq{MAXPOLYI[4];

float vertices [MAXVERTI(3];

float n_vert{MAXVERTI[3];

float normal[MAXVERT](3];

short mycolorl,cindextMAXVERT];

int npvert{MAXPOLY];

int *pvertptr{MAXPOLY];

short plan_info[MAXPOLY];

int pvertfMAXPVERT];

float dxlist{100],dylist{100],dzlist{100];
int indxlist{100],number;

float red[256],g'm[256],blu[256],dred[256],dgm[256] ,dbluf256];
int num_shade_color,num_shade_level;
float forward;

int vertex_index({6][4]={{1,2,6,5},
{2,3,7,8},
{3,4,8,7},
{4,1,5,8},
{1,4,3,2,
{5,6,7,8};

/* line variables */

int nline,rﬂvert,line_index_list{MAXLVER’I‘],nplinefMAXLINE];
short clinefMAXLINE];

float line_vert{MAXLVERT](3];

float xmax,xmin,ymax,ymin,zmax,zmin,xcent,ycem,zcent,length,emin,emax,scale;
float xlist{100],ylist{100},2zlist{100};

float menu_x,menu _y,menu_h,menu_w,menu_f,window_fact;
int n_button,face_remove;
float T,B,L,R,dot,alpha,beta,r;

int nobj,npoly,nvert;

int free_vert,free_poly,free_obj,free_pvert;
int old_vert,old_poly,old_pvert;

int raster_id;

struct menu_table_format menu_table(30];

struct view_parameters_format my_view_parameters;
struct image_status_format image_status;
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struct obj *objlst;
struct poly *polylst;
struct vert *vertlst;
struct pvert *pvertlst;
VECTOR cut_normal;
POINT plane_locate;
POINT cut_plane[6];

main(argc, argv)
int arge;

char *argvi};

{

char string(81];

int i,end jk;

int button,length =0;
float gema,w,cosb,x,y,z;
POINT cut_point;
LINE line;

FILE *fptr;

printfT"Input cut plane normal ");
scanf("%f %f %f" ',&cut_normal.u,&cut_normal.v,&cut__normal.w);

if (1oad_file(argv{1]) != NULL ) exit(1);

get_view_surface(our_surface,argv);
start_up_core();
init_menu();

/* initialize */

r=5000.0;

alpha=beta=0.0;

face_remove=FALSE;

window_fact=1.0;
num_shade_color=4,num_shade_level=52;
image_status.line=image_status.wire_frame=
image_status.out_box=image_status.solid=
image_status.special=image_status.cutting =image_status.move = FALSE;
forward = 12.0;

raster_id = 900;

plane_locatex = 0.0;plane_locate.y = 0.0;plane_locate.z = 0.0;
/ *

image_status.out_box=TRUE;

create_retained_segment(OUTBOX);
draw_box();
close_retained_segment(OUTBOX);
*/
new_view_point(alpha,beta,r);
for (;;)
{
switch(call_menu(MENU,TRUE))

{



case 1:/* Right + 10 ./
if (image_check()) break;
alpha +=10.0;
new_view_point(alpha,beta,r);
image_switch();
break;

case 20: /* Right + 2 ¥/
if (image_check()) break;
alpha +=2.0;
new_view_point(alpha,beta,r);
image_switch();

break;

case 2: /* Left -10 */
if (image_check()) break;

alpha - =10.0;
new_view_point(alpha,beta,r);
image_switch();

break;

case 21: /* Left -2 */

if (image_check()) break;
alpha - =2.0;
new_view_point(alpha,beta,r);
image_switch();

break;

case 3: /* down +10 */

if (image_check()) break;
if (beta <90.0) beta +=10.0;
new_view_point(alpha,beta,r);
image_switch();

break;

case 23: /* down +2 */
if (image_check()) break;

if (beta <90.0) beta +=2.0;

new_view_point(alpha,beta,r);
image_switch();

break;

case 4: /* up +10 */
if (image_check()) break;

if (beta > -80.0 ) beta =10.0;
new_view_point(alpha,beta,r);
image_switch();

break;



case 22: /* up+2 %/
if (image_check()) break;

if (beta > -90.0 ) beta -=2.0;
new_view_point(alpha,beta,r);
image_switch();

break;

case 5:
if (image_check()) break;

r +=2500.0; /* zoom out */

new_view_point{alpha,beta,r);
image_switch();

break;

case 6:
if (image_check()) break;

r -=2500.0; /* zoom in */
if (r<100.0) r=100.0;
new_view_point(alpha,beta,r);
image_switch();

break;
case 7: *reset */

if (image_check()) break;
r =5000.0;
window_fact=1.0;
setvwpo(x,y,z,bbox);
new_view_point(alpha,beta,r);
image_switch();

break;

case 8: /**tt*#**#**‘t Solid *t*#‘*ttt****t*t****#*/

if (face_remove | ! image_status.move) {
new_frame();
face_remove = image_status.move = FALSE;

}

new_view_point(alpha,beta,r);
set_shading_parameters(.01,.9,.0,0.0,7.,0,1);
set_primitive_attributes(&PRIMATTS);
set_polygon_interior_style( SHADED );
create_temporary_segment();

drawobjl1();

face_remove=TRUE;
close_temporary_segment();

break;



case 9: / cut SR ERBERBEIRIERBRNE R/

if (face_remove ){
new_frame();
face_remove = FALSE;
}

if (image_status.wire_frame){
image_status.wire_frame=FALSE;
delete_retained_segment(WIREFRAME);

if (image_status.line)(
image_status.line=FALSE;
delete_retained_segment(DRAWLINE);
}

if (image_status.out_box){
image_status.out_box=FALSE;
delete_retained_segment(OQUTBOX);
}

if (image_status.move | ] image_status.cutting){

if (image_status.move) {
delete_retained_segment{SCREENTEXT);
image_status.move = FALSE;
}

if (image_status.cutting)image_status.cutting = FALSE;

new_frame();

delete_retained_segment(PLANE);

}

cut_obj(cut_normal,plane_locate);
create_temporary_segment();

draw_box();

/*draw_wireframe();*/

close_temporary_segment();
create_retained_segment(PLANE);
new_cut_plane(cut_normal,plane_locate,&cut_plane[0].x,&i);
draw_cut_plane(i);

close_retained_segment(PLANE);

rebuild_planeq();
image_status.cutting = TRUE;

section_draw();
/*inquire_viewing_parameters(&my_view_parameters);
set_view_reference_point(0.0,0.0,0.0);*/

break;

case 10:
shut_down_corel();
exit();

case 11:



if (image_status.wire_{rame)
{
image_status.wire_frame=FALSE;
delete_retained_segment(WIREFRAME);
}

{

image_status.wire_frame=TRUE;
new_view_point{alpha,beta,r);
create_retained_segment(WIREFRAME);

draw_wireframe();
close_retained_segment(WIREFRAME);
)

break;
case 12:
if (image_status.out_box)
;mage_status.out_b ox=FALSE;
delete_retained_segment{OUTBOX);
else )

{
image_status.out_box=TRUE;
new_view_point(alpha,beta,r);
create_retained_segment(OUTBOX);
draw_box();
close_retained_segment(OUTBOX);
}
break;

case 13:

if (image_status.line) /*line */
{
image_status.line=FALSE;
delete_retained_segment{DRAWLINE);
)
else
{
image_status.line=TRUE;
new_view_point(alpha,beta,r);
create_retained_segment(DRAWLINE);
drawline();
close_retained_segment(DRAWLINE);
}
break;
case 14: /* larger*2 */
if (window_fact>0.1 ) window_fact -=0.1; else if (window_fact>0.01) window_fact -=0.01;
new_view_point(alpha,beta,r);
image_switch();

break;

case 24: /* larger*1 */
if (window_fact>0.01) window_fact -=0.01;

%



new_view_point(alpha,beta,r);

image_switch();

case 15:

break;

/* smaller*2 */
window_fact +=0.1;
new_view_point(alpha,beta,r);

image_switch();

case 25:

break;

/* smaller*1 */
window_fact +=0.01;
new_view_point(alpha,beta,r);

image_switch();

case 18:

break;

case 19:

case 26:

break;

/* Switch cutting direction */

cut_normal.u = -cut_normal.u;
cut_normal.v = -cut_normal.v;
cut_normal.w = -cut_normal.w;

/* Cutting plane move forward */
if (bbox[0][1]<=plane_locatex &&

bbox[1][1}<=plane_locate.y &&

bbox{2)[1]<=plane_locate.z ) break;
move_cut_plane(1);

break;
/* Cutting plane move backward */
if (bbox[0][0]>=plane_locatex &&
bbox{1][0]>=plane_locate.y &&
bbox{2]{0]>=plane_locate.z ) break;
move_cut_plane(-1);

break;
case 27: /* Raster file */
raster_file();
break;
case 28: /* Load Raster file */
load_raster();
break;
case 29: /* Move Raster */
move_raster();
break;
case 30: /* Delete Raster */
re_store();

case 31:

delete_raster();

break;

/* Menu hiding */
set_segment_visibility(MENU,FALSE);
set_echo(LOCATOR, 1,1}
for (3;)

{
do



case 32:

await_any_button _get_locat.or_2(20000000,1,&button,&.x,&y);
while(button == 0);
ifbutton==1 | | button ==2 | | button == 3) break;

}
sot_segment_visibility( MENU,TRUE);
set_echo(LOCATOR,1,0);

break;
/* cutting file */

if (face_remove ){
new_frame(};
face_remove = FALSE;
}

if (image_status.wire_frame)
image_status.wire_frame=FALSE;
delete_retained_segment.(WIREFRAME);

if (image_st.atus.line){
image.stat.us.line=FAISE;
delete_retained_segment(DRAWLINE);
}

if (image_status.out_box){
image_status.out_box:FALSE;
delete_retained_segment(OUTBOX);
}

if (image_status.move | | image_status.cutting){
if (image_status.move) image_status.move = FALSE;
if (image_status.cutting)image_status.cutting = FALSE;
new_frame();
delets_retained_segment(PLANE);
}

if ((fptr = fopen(“cut_file", “r")) == NULL) {

printf{"Can't open cut_file file\n");
exit (1);
}

fscanf(fptr,"%d",&k);

create_retained_segment(PLANE);

draw_box();

for(j=0;j<kj++}

fscanfifptr," %{%f%f ',&cut_nonnal.u,&cut_norma].v,&cut_normal.w);
fscanfifptr,” %f%f{%f" ,&plane_locate.x,&plane_locat.e.y,&plane_locate.z);
plane_locatex =plane_locate.x*scale;

plane_locate.y =plane_locate.y*scale;

plane_locate.z =plane_locate.z*scale;
cut_obj(cut_normal,plane_locate);
new_cut__plane(cut_normal,plane_locate,&cut_plane[O].x,&i);
draw_cut_plane(i);

rebuild_planeq();

)

close(fptr);



close_retained_segment(PLANE);
image_status.cutting = TRUE;

/*section_draw();*/

breaky* end of cut files */
default:
break;

} /* end of switch */
} /* end of waiting for */
} /* end of main ¥/

int image_check()

{

if (image_status.move | | image_status.cutting) {
delete_retained_segment(PLANE);
new_frame();
image_status.cutting = image_status.move = FALSE;

}

if (image_status.cutting) {
new_frame();
image_status.cutting = FALSE;
)
if (image_status.line== FALSE && image_status.wire_frame
== FALSE && image_status.out_box== FALSE && image_status.solid
== FALSE && image_status.cutting == FALSE) return(TRUE);
else
retwrn(FALSE);
}

new_view_point(alpha,beta,r)
float alpha,beta,r;

{

float cosb.x,y,z;

cosb= fabs(cos(beta*P1/180.0));

x = r*cosb*sin(alpha*P1/180.0);

y = r*sin(beta*P1/180.0);

z = r*cosb*cos(alpha*P1/180.0);
setvwpo(x,y,z,bbox);

/* set_single_window; */

} /* end of new_view_point */

move_cut_plane(direction) int direction;
{inti;
char buff[120];

if (image_status.cutting){
delete_retained_segment(PLANE);
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image_status.cutting = FALSE;
}
if (image_status.move== FALSE &&
face_remove == FALSE && image_status.wire_frame == FALSE )
create_temporary_segment();
draw_box();
/*draw_wireframe();*/

close_temporary_segment();
creata_retained_segment(PLANE);
}
if image_status.move== FALSE &&
(face_remove | limage_status.wire_frame it
create_temporary_segment();
draw_box();
close_temporary_segment();
create_ret.ained_segment(PLANE);
}
plane_locatex += forward*cut_normal.u * direction ;
plane_locate.y += forward*cut_normal.v * direction ;
plane_locate.z += forward*cut_normal.w * direction ;
new_cut_plane(cut_normal,plane_locate,&cut_plane[ol.x,&i);
if (image_status.move ){
delete__retained_segment(PLANE);
create_ret.ained_segment(PLANE);
delete_retained_segment(SCREENTEXT);
}
draw_cut_plane(i);
close_retained_segment(PLANE);

inquire_viewing _parameters(&my_view_parameters)'.
set_view_reference_point(o.0,0.0,0.0);
set_view_plane_normal(0.0,0.0, -1.0);
set_view_plane_distance(0.0);
set._projection(PARALLEL,0.0,0.0,1.0);
set_view_up_3(0.0,1.0,0.0);
set_window(0.0,100.0,0.0,767.0);
set_view_depth(0.0,1.0);
set_window_clipping(FALSE);
set._viewport_3(0.0,0.915,0.0,.75,0.0,1.0);

creat,e_retained_segmenb(SCREENTEXT);
move_abs_3(10.0, 10.0,0.0);
text("Cutting Plane Location: ");

sprintflbuff,"%3.3f %3.3f %3.3f",
plane_locate.x/scale,plane_locate.y/sca]e,plane_locate.z/scale);

move_abs_3(35.0, 10.0,0.0);

text(buff);

close_retained_segment(SCREENTEXT);

set_viewing _parameters(&my_view_parameters);

image_status.move= TRUE;
}* end of move_cut_plane */



#include "mycut”

raster_file()
{
int rasfid,ij;
int butnum,button;
float xmin, ymin, X, y,z, Xmax, ymax,zmax,mx,my;
float wx, Wy, Wz,WwX, wwy,wwz,kx,ky,xmin_ndc,xmax_ndc,ymin_ndc,ymax_ndc;
char string{80]; int length;
struct suncore_raster my_raster;
extern struct vwsurf *our_surface;
struct { int type, nbytes;
char *data; } map;

FILE *fptr;

char *path_name;

path_name = “/home/Caifload_file_lib";
inquire_viewing_parameters(&my_vi ew_parameters);
set_view_reference_point(0.0,0.0,0.0);

set_view_plane_normal(0.0,0.0, -1.0);
set_view_plane_distance(0.0);

set _projection(PAR.ALLEL,0.0,0.0,1.0);
set_view_up_3(0.0,1.0,0.0);
set_window(0.0,100.0,0.0,767.0);
set_view_depth(0.0,1.0);
set_window_clipping(FALSE);
set_viewport_3(0.0,0.915,0.0,.75,0.0,1.0);

set_echo(LOCATOR, 1,1);

for (;;)
{
do
await_any_button _get_locator__2(1000000,1,&button,&mx,&my);
while(button == 0);

break;

}
set_echo_position( LOCATOR, 1, mx,my);

printf("\nfirst point %f %f',mx,my);
map_ndc_to_world_3( x, y, 0.0,&wx, &wy,&wz);
printf("xyz %f %f %{,wx, Wy, wz);
set_echo({ LOCATOR,1, 6);
do {
await_any_button_get_locator_2( 10000001, &butnum, &xmax, &ymax);

} while (butnum != 3);
printf{"\nfirst point %f %f°,xmax, ymax),
printf"\n%f %f %f" bbox{0][0],bbox{1][0],bbox{2]{0);
printf{"\n%f %f %f" bbox{0)[1],bbox{1][1],bbox{2](1]);
set_echo_position( KEYBOARD, 1, 0.25, 0.1); /* move to start positn */
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set_keyboard( 1, 80, ™, 0); /* set user char buf size */

xmin_nde = (mx<=xmax ) ? mx : xmax;

xmax_ndc = (xmax>= mx) ? xmax : mx;

ymin_ndc = (my<symax ) ? my : ymax;

ymax_ndc = (ymax>= my) ? ymax : my;

sizo_raster(our_surface,min_ndc,nnax_ndc,ymin_ndc,ymax_ndc,&my_raner);

allocate_raster(&my_raster);
get_rastar(our_surface,xmin_ndc,xmax_ndc,ymin_ndc,ymax_ndc,o,0,&my_raster);

create_retained_segment(SCREENTEXT);

move_abs_2(10.0, 10.0,0.0);

text("Raster File Name: *);

set_echol KEYBOARD,1,1); /* echo the text */
await_keyboard( 10000000,1, string, &length);

if (length && string{length-1] == "\n’) string{length-1] ='\0;

move_abs_2(25.0, 10.0,0.0);
text( string);
move_abs_2(50.0,50.0);

close_retained_segment(SCREENTEXT);

set_image_transformation_type( XLATE2);
create_retained_segment(99);
set_primitive_attributes( &PRIMATTS);
set_pick_id( 1);
put_raster{&my_raster);
set_segment_detectability( 99, 5);
ifl (rasfid = open( "try", 0)) == -1) {

rasfid = creat{ "try", 0755);

}

if (rasfid 1= -1} {

map.type = 1; map.nbytes = 768; map.data = "85";

file_to_raster( my_raster, &mabp, rasfid );

close( rasfid);

}

free_raster(&my_raster);

close_retained_segment{99);
strcat(path_name,&string{0]);
save_segment(99,string);

delete_retained_segment(99);
delete_retained_segment(SCREENTEXT);

set_viewing_parameters(&my_view_parameters);
}/* end of raster_file */

load_raster()

{

int rasfid,ij;

int butnum,button;

float xmin, ymin, x, y,z, XmaXx, ymax,zmax,mx,my;

float wx, Wy, WZ,WWX, wwy,wwz,kx,ky,xmin_ndc,xmax_ndc.ymin_ndc,ymax_ndc;
char string{80]; int length;



struct suncore_raster my_raster;
extern struct vwsurf *our_surface;
struct { int type, nbytes;

char *data; } map;
FILE *fptr;

int segnam, pickid, segtype;
float sx0, sy0, ang0, tx0, ty0;
float sx, sy, ang, X, ty;

float px, py;
char *path_name;

inquire_viewing _parameters(&my_view_parameters);
set_view_reference_point(0.0,0.0,0.0);

set_view_plane_normal(0.0,0.0, -1.0);
get_view_plane_distance(0.0);
set_projection(PARALLEL,0.0,0.0,1.0);
set_view_up_3(0.0,1.0,0.0);
set_windOW(0.0,l00.0,0.0,767.0);
set_view_depth(0.0,1.0);
set_window_clipping(FALSE);
set_viewport_3(0.0,0.915,0.0,.75,0.0,1.0):

set_echo_position( KEYBOARD,1, 0.25, 0.1);
set_keyboard( 1, 80, ™", 0);
create_retained_segment(SCREENTEX’I');
move_abs_3(10.0, 10.0,0.0);
text("Raster File Name: ");

await_keyboard( 10000000,1, string, &length);
set_pick_id( 1);
if (length && stringflength-1] =="\n) string{length-1] ="\0’

move_abs_3(25.0, 10.0,0.0);
text( string);
close_retained_segment(SCREENTEXT);

if ((fptr = fopen(string, "r")) == NULL) {
move_abs_3(25.0, 20.0,0.0);

text( "Can't open raster file );
for (i=0;i<10000;i++);
delete_retained_segment(SCREENTEXT);

return(1);

restore_segment(raster_id,string);

set_echo(LOCATOR, 1,1);

for (;;)
{
do
await_any_button _get_locat,or_2(1000000,1,&button,&mx,&my);
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while(button == 0);

break;

}
set_echo( LOCATOR,1, 0);
do{
await_any_button_get_locator_2( 0,1, &butnum, &x, &y);
tx = x-mx; ty = y-my;

set_segment_image__translate_2(raster_id , L ty);
} while (butnum != 3);
raster_id++;
set_viewing _parameters(&my_view_parameters);
delete_retained_segment(SCREENTEXT);

}/* end of load raster */

move_raster()

(

int rasfidij;

int butnum,button;

float xmin, ymin, X, ¥,z, Xinax, ymax,zmax,mx,my;

float wx, Wy, Wz,WWX, wwy,wwz,kx,ky,xmin_ndc,xmax_ndc,ymin__ndc,ymax_ndc;
char string{80}; int length;

int segnam, pickid, segtype;
float sx0, sy0, ang0, tx0, ty0;
float sx, sy, ang, tx, ty;
float px, py;

/* inquire_viewing_parameters(&my__view_parameters);
set_view_reference_point(0.0,0.0,0.0);

set_view_plane_normal(0.0,0.0, -1.0);
set_view_plane_distance(0.0);
set_projection(PARALLEL,0.0,0.0,1.0);
set_view_up_3(0.0,1.0,0.0);
set_windOW(0.0,100.0,0.0,767.0);
set_view_depth(0.0,1.0);
set_window_clipping(FALSE);
set_viewpon_3(0.0,0.915,0.0,.75,0.0,1.0);

create_retained_segment(SCREENTEXT);

move_sabs_2(10.0, 10.0);

text("Find your image and move");
close_retained_segment(SCREENTEXT);

await_pick( 1000000000, 1, &segnam, &pickid);
await_any_button_get_locator_2( 0,1, &butnum, &px, &py);

set_echo{ LOCATOR,1, 0);
do {
await_any_button_get_locator_2( 0,1, &butnum, &x, &y);
tx = x-px; ty = ¥-pY;

set_segment_image_transiate_2(segnam , tx,ty);
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} while (buthum != 3);

set_viewing_parameters(&my_view_parameters);
delete_retained_segment(SCREENTEXT);
*/

}

delete_raster()
{
new_frame();

}

section_draw()

{

int ij.k;

int index,flag;

float vect0[3],vect1[3],scale,plane[8][3],area,cut_area,point[400][3],u,v,w;
FILE *fptr;

float x,y,z,xc,yc,zc,sina,cosa,sinb,cosb,minx,maxx,minz,maxz,fact_x,fact_z,fact;

if ((fptr = fopen("nc.dat”, "r")) == NULL) {
printf{"Can't open nc.dat file\n");
exit (1);
}

fscanf(fptr," %f%f%{", &vect0[0],&vectO[ 1}, &vect0[2]);
fscanfifptr,”%f",&scale);

fscanf(fptr,"%d",&k);

u=vect0{0];

v=vectO[1];

w=vect0[2];

sinb= (u==0.0 && v==0.0)? 0.0 : -Wsqrt{u*u+v*v);
cosb= (u==0.0 && v==0.0) ? 1.0 : v/sqri(u*u+v*v);

cosa= (u==0.0 && v==0.0 && w==0.0)? 1.0: sqri(u*u+v*v)/sqri(u*u+ v v+wrw);
sina= (u==0.0 && v==0.0 && w==0.0) ? 0.0 : w/sqri{u*u+v*v+w*w);
maxx=minx=maxz=minz=0.0;
for (i=0ji<k;i++)
{

fscanfifptr," %{%{%f",&plane(il{0],&plane[ill 1],&plane(il[2]);

plane{i][0] = plane[i][0Vscale;

plane(il{1] = plane{il[1Vscale;

plane{il)[2] = plane[il[2)scale;

for (i=0; <k;i++)
{

if (i==0){
xc=plane{i][0];
ye=plane(il[1];
ze=plane(il[2];



)

xc=ye=2c=0.0;
plane{iJ[0}=planeli][0]-xc;
plane(il{1]=plane(ill1}-yc;
plane(ill2]=plane{i}[2]-zc;
x:plane{il[O]*cosb-u-plane[i][1]*sinb;
y= -plane{i][O]*sinb+plane[i][1]‘cosb;
z= planelil2];

planeliJ[0} = x;plane{il 1] = y;planelill2] = z;
x=plane{il0];
y=p1ane[i][1]*cosa+plane[i][2]‘sina;
z= -plane[i][1]*sina+plane[i][2]*cosa;

plane(i][0] = x;planelil1] = yplane(ili2] = z;
plane{i][O]:plane[iIO]+xc;
plane(ili1]=planelill2]+yc;
planeli){2}=planelil[2]+zc;
printf(” %3.4f %3.4f %3.41\n",plane{i][O],plane[i][1],p1ane{i][2]);
iftli==0){
maxx=minx=plane(i][0];
maxz=minz=planelil{2};
)
else {
maxx= (maxx<plane(il[0]) ? plane(i][0] : maxx;
minx= (minx>plane(i}{0]) ? plane(il{0] : minx;
maxz= (maxz<plane{i]2]) ? plane{i](2] : maxz;
minz= (minz>planelil[2]) ? planefill2] : minz;

}
}
flag = (fabs(man-minx)>=fabs(maxz-minz)) 2 TRUE : FALSE;

fact= (flag) ? fabs(5.4/(maxx-minx)) : fabs(5.4/{(maxz-minz));
inquire_viewing _parameters(&my_view_parameters);
set_view_reference_point(0.0,0.0,0.0);

set_view_plane_normal(0.0,0.0, -1.0);
set_view_plane_distance(0.0);
set_projection(PARALLEL,0.0,0.0,1.0);
set_view_up_3(0.0,1.0,0.0);
set_window(0.0,6.0,0.0,6.0);
set_view_depth(0.0,1.0);
set_window_clipping(TRUE);

/*set_viewport_3(0.0,0.375,0.375,0.75,0.0,1.0);"/
set.__viewport_3(0.0,0.5,0.25,0.75,0.0,1.0):
create_temporary_segment();
/*xlist{0]=0.0;2list[0]=0.0;
xlist{1]=6.0:zlist{1]=0.0;
xlist{2]=6.0;2list{2]=6.0;
xlist{3]=0.0;2list{3}=6.0;
xlist{4)=0.0;2}ist{4]=0.0;
move_abs_2(xlist[0],z1ist[0]);
polyline_abs_2(xlist,zlist,5);"/

set_linewidth(0.5);
set._line_index(MENU_TEXT_COLOR);
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for (j=Ogj<kj++)

{

if (flagt
xlist{j] = (plane{jl[0]}-minx)*fact+(6.0-(maxx-minx)*fact)*0.5;
zlist(j] = (plane(j][2)-minz)*fact+6.0{maxz-minz)*fact)*0.5;
}

else {
zlist{j] = (plane{j][0]-minx)*fact+(6.0{maxx-minx)*fact)*0.5;
xlist(j] = (plane{ji[2)-minz)*fact+(6.0-(maxz-minz)*fact)*0.5;

}

list{j] = xlist{0];

zlist{j] = zlist[0};
move_abs_2(xlist{0],z1ist[0]);
polyline_abs_2(xlist,zlist,k+1);

cut_area=0.0;

while ( fscanflfptr,"%d",&k)!=EOF) {

fscanflfptr," %f%f%f", &vect0{0],&vectO[1],&vectO[2]);
fscanf(fptr,"%d",&Kk);

for (i=0i <ksi++)

{

fscanflfptr," %f%f%f", & pointlil[0], &point[i]{1),&point{i][2]);
point{iI0] = point[i][0Vscale;

point{iI1] = point{i][1}/scale;

point{iI2] = point{il[2Vscale;
xe=yce=z2¢=0.0;

point{i]0}=point[i][0]-xc;
point(i[1]=point[i][1]-yc;
point{i12)=point{i][2]-zc;
x=point{i)[0]*cosb+point{i][1]*sinb;

y= -point{iJ[0}*sinb+pointli][ 1]*cosb;

z= point{iJ[2];

poindi]0] = x;pointlil[1] = y;point{if2] = z;
x=pointi][0];
y=point{il[1]*cosa+point{i}[2]*sina;

z= -point{il[1]*sina+point{i][2]*cosa;

poindil0] = x;point{i][1] = y;point{iJ2] = z;

point{i]0}=point{iJ[0)+xc;

point[i[1]=point{i]{1]+yc;

point{il[2]=point{i[2]+zc;

r*printfl” %d %3.4f %3.4f %3.4M\n",i,point(i][0],point{i][1],point{il[2]);*/

if (flag)
xlist{i] = (point{i][0]-minx)*fact+(6.0-(maxx-minx)*fact)*0.5;
zlist{i] = (point{i)[2]-minz)*fact+(6.0(maxz-minz)*fact)*0.5;
}

else {
zlist{i] = (point{i][0]-minx)*fact+ 6.0{maxx-minx)*fact)*0.5;
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xlist{i] = (point{i][2}-minz)*fact+6.0{maxz-minz)*fact)*0.5;

)

xlist{i] = xlist{0];

ist{i] = Zist{0};
move_abs_2(xlist{0],zlist{0]);
polyline_abs_2(xlist,zlist,k+1);

}7* end of cut file */

set_linewidth(0.0);

close_temporary_segment();
set_viewing_parameters(&my_view_parameters);

close (fptr );
}/* end of section draw */

re_store()

int i,j ,k,index,num_vert,poly_index,new_vert,new_index,new_nobj;
float x,¥,2,x0,y0,20,length,bbox1[3](2];

short *ptr,*vert_index_st;

struct vert *vertlstptr;

FILE *ptr;

new_nobj=new_vert=0;
vert_index_lst = (short *)malloc(free_vert * sizeof(short));
for (i=0ji<free_vert;i++)

vert_index_lstli]l=-1;

fptr = fopen("nn.dat’, "w");

for (i=0;i<nobj;i++) if (objlst{il.npoly !=0) new_nobj++;
npoly=0;
for (i=0;i<nobj:i++) npoly=npoly +objlst[i].npoly;

for (i=0;i<nobj;i++ )|
poly_index = objlst{i}.index;
for (j=07j<objlstlil.npoly;j++}
linking(&poly_index);
ptr = polylst{poly_index].pvert.ptr;
num_vert = polylst{poly_index++].npvert;
for (k=0;k<num_vert;k++){
vert_index_lst[*ptr++]=-2;
}/* mark all the vertexes of one polygon */
}7* end of j poly loop */
}/* end of i loop */
for (k=0:k<free_vert;k++)
if (vert_index_lst{k]==-2) new_vert++;

bbox1[0)[0] = bbox1[0][1] = bbox1[1]{0] =
bbox1{1)[1] = bbox1(2][0] = bbox1[2][1} = 0.0;



for (im0;i<free_vert;i++)
ifivert_index_lst{i]== -2)(
if (bbox1[0][0] >= vertlst{i].vertex.x) bbox1[0][0]
= vertlst[i].vertexx;
if (bbox1[0][1] < vertlst(i].vertex.x) bbox1[0X1]
= vertlst[i].vertexx;
if (bbox1[1]{0] >= vertlst{i).vertex.y) bbox1(1)[0]
= vertlst[i].vertex.y;
if (bbox1[1]{1] < vertlst{i].vertex.y) bbox1[{1]{1]
= vertlst{i].vertex.y;
if (bbox1{2][0] >= vertist[il.vertex.z) bbox1{2]{0]
= vertlst{i].vertex.z;
if (bbox1[2][1] < vertlst(il.vertex.z) bbox1{2]{1]
= vertlst(i].vertex.z;
)
vert_index_lst[i]= -1;

}
fprintfifptr,"%d %d %d\n",new_nobj,npoly,new_vert);

for (i=0;i<3:i++) for(j=0;j<2;j++) bbox1[illj] * = 1.2;

fprintfifptr, “%f %f %f %f %f %f\n", bbox1[0][0Vscale, bbox1[0][1Vscale,
bbox1[1][0Vscale,bbox1[1]{1}/scale,bbox 1[2)[0Vscale, bbox1[2][1)/zcale);

new_vert=0;
for (i=0;i<nobj;i++}
if (objlst{il.npoly ==0) goto next_obj;
poly_index = objlst[i].index;
for (k=0:k<free_vert;k++)
vert_index_lst{k]=-1;

for (j=0gj<objlst{il.npolyj++){
linking(&poly_index);
ptr = polylst{poly_index].pvert.ptr;
num_vert = polylst{poly_index++].npvert;
for (k=0;k<num_vert;k++){
vert_index_lst{*ptr++]=-2;
}/* mark all the vertexes of one polygon */
}/* end of j poly loop */

num_vert=0;
for (k=0;k<free_vert;k++)
if (vert_index_lst[k]==-2) num_vert++;

fprintf fptr,"%d %d\n",objlst{il.npoly,num_vert);

for (k=0:k<free_vert;k++){
if (vert_index_lst{k]==-2){
x=vertlst[k].vertex.x/scale;
y=vertlst[k].vertex.y/scale;
z=vertlst{k].vertex.z/scale;
fprintffptr, "%f %f %f\n",x,y,z);
vert_index_lst{k]=new_vert;
new_vert++;
}

}/* end of sending */

poly_index = objlst[i].index;



for (j=0;j<objlstlil.npoly;j++){

linking(&poly_index);

ptr = polylst{poly_index].pvert.ptr;

num_vert = polylst{poly_index].npvert;

fprintfifptr,"%d ",num_vert);

fprintfifptr,"%d ",polylst{poly_index++].info);

for (k=0;k<num_vert;k++)}{
new_index=avert_index_lst{*ptr++]+1;
fprintfifptr,"%d ",new_index);

}/* send all the vertexes index of one polygon */
fprintfifptr,"\n");
}/* end of j poly loop */
next_obj:k=0; /* no poly !! */
}/* end of i obj loop */
free(vert_index_lst);
fprintfifptr,"%d %d\n",0,0);
fclose(fptr);
| W i end of restore  */

Subroutines for Model Depiction

#include <sun/fbio.h>
#include <usercore.h>
#include <math.h>
#include <stdio.h>
#include "model.h”

/* Externals */

extern nobj,npoly,nvert,vertex_index{6][4);
extern free_vert,free_poly,free_obj,free_pvert;
extern old_vert,old_poly,old_pvert;

extern float bbox[3][2];

/* Externals */

extern struct obj *objlst;
extern struct poly *polylst;
extern struct vert *vertlst;
extern struct pvert *pvertlst;

int plane_cut_line(normal,locate,line,cut_point)
VECTOR normal;

POINT locate;

LINE line;

POINT *cut_point;

{

float px,py,pz,d,d1,d2,cosal,cosal,delta;

float a[3](3];

VECTOR v0,v1,],vtemp;

int end0_in,endl_in;

float dot_product();

v0.u = line.p0.x - locate.x;
v0.v = line.p0.y - locate.y;



vO.w = line.p0.z - locate.z;
vl = line.pl.x - locatex;
vl.v = line.pl.y - locate.y;
vl.w = line.pl.z - locatez;
cosa0 = dot_product{&normal,&v0);
cosal = dot_product(&normal,&v1);

if (cosa0> PLANETHICK && cosal>PLANETHICK ) return(NOCUT);
end0_in = (cosa0 <= PLANETHICK && cosa0 >= -PLANETHICK) ? TRUE :FALSE;
endl_in = (cosal <= PLANETHICK && cosal >= -PLANETHICK) ? TRUE :FALSE;

if (endl_in &&
end0_in) return(ONPLANE);
if ((cosa0< -PLANETHICK && cosal< -PLANETHICK )
| 1( endO_in && cosal< -PLANETHICK)
11 ( endl_in && cosa0O< -PLANETHICK ) )
return(ALLCUT);

if ((end0_in && cosal>PLANETHICK)
I | (endl_in && cosa0>PLANETHICK)){
if (end0_in}{ /* end at p0 */
cut_point->x = line.p0.x;
cut_point->y = line.p0.y;
cut_point->z = line.p0.z;
return(ENDCUTO);

}

if (end1_in){ /* end at pl */
cut_point->x = line.pl.x;
cut_point->y = line.pl.y;
cut_point->z = line.pl.z;
return(ENDCUT1);
}

l.u = line.plx - line.p0.x;

l.v = line.pl.y - line.p0.y;

l.w = line.pl.z - line.p0.2;

delta = ((line.plx + 10.0 != line.p0.x) && (line.plx + 10.0 != line.p0.x)

&& (line.plx + 10.0 !=line.p0x)) ? 10.0: 20.0;

vtemp.u = line.plx + delta - line.p0.x;

vtemp.v = line.pl.y + delta - line.p0.y;

vtemp.w = line.pl.z + delta - line.p0.z;

cross_product(&v0,&vtemp, &l);
cross_product(&v1,&v0,&D);

a[0][0] = normal.u; a[0][1] = normal.v; a[0][2] = normal.w;
a[1][0] = vO.u; a[1][1] = vO.v; a[1][2] = vO.w;

al2][0] = v1.u; a[2][1] = vl.v; a[2][2] = v1.w;

d = normal.u*locate.x+normal.v*locate.y+normal.w*locate.z;
d1 = v0.u*line.pl.x+v0.v*line.pl.y+v0.w*line.pl.z;

d2 = vl.u*line.pl x+vl.v*line.pl.y+v1l.w*line.pl.z;

matinv(&a[0][0));
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cut_point->x = a[0J[0]*d + a{0][1]*d1 + a[0][2]*d2;
cut_point->y = a{1][0]*d + a[1][1]*d1 + a[1)[2]*d2;
cut_point->z = a[2][0]*d + a[2)[1]*d1 + a[2][2]*d2;
if (cosa0<= PLANETHICK) return(PARTCUT1);
if (cosal<= PLANETHICK) return(PARTCUTO);

)

rebuild_planeq()
{
struct count{
shortn
h
struct count *normalcount;
float x,y,z,length;
int i,j,v1,v2,v3,vtmp,poly_index,jj,num_vert;
short *ptr;

if (normalcount != NULL ) free(normalcount);

normalcount=

(struct count *)malloc(free_vert * sizeof(struct count));
for (i=0:i<free_vert;i++) {

normalcount(il.n = 0;

vertlst{il.normal.x = vertlst{i].normal.y

= vertlst{ij.normal.z =0.0;

}

/* rebuild planeq A,B,C,D and normal at ehch vertex */
for (i=0;i<nobji++)

poly_index = objlst{i]l.index;

for (j=03j<objist{il.npoly;j++)

linking(&poly_index);

ptr = polylst{poly_index].pvert.ptr;

num_vert = polylst{poly_index].npvert;

polylst{poly_index].planq.a = polylst{poly_index].plang.b

= polylst{poly_index].planq.c = polylst{poly_index]}.planq.d = 0.0;

v3 = *ptr++;

v2 = *ptri+;

vl = *ptr;

for (jj = 0; §j < 3; j++)

{

polylst{poly_index].planqg.a += vertlst{vl].vertex.y*
(vertlst[v2].vertex.z - vertlst{v3].vertex.z);

polylst{poly_index].planq.b += vertlst{vl].vertex.x *
(vertlst[v3].vertex.z - vertlst{v2].vertex.z);

polylst{poly_index].plang.c += vertist{v1].vertexx *
(vertlst{v2].vertex.y - vertist{v3]l.vertex.y);

polylst{poly_index].planqg.d += vertlst{vl].vertex.x *
{(vertlst{v3].vertex.y * vertlst{v2].vertex.z) -
(vertlst{v2].vertex.y * vertlst{v3].vertex.z));

vtmp = v1; vl = v2; v2 = v3; v3 = vtmp;

}

x = polylst{poly_index].plang.a;
y = polylst{poly_index].planq.b;

42



z = polylst[poly_index].planq.c;
length = sqrt( x*x + y*y + z*z);
ptr = polylst{poly_index].pvert.ptr;
for (jj = 0; ij < polylst{poly_index].npvert;jj++)
{
vtmp = *ptr+;
vertist{vtmp].normalx += x/length;
vertlst{vtmp].normal.y += y/length;
vertlst{vtmpl.normal.z += zlength;
normalcount{vtmpl.n++;
}

poly_index++;

} * end of poly. j loop */

} /* end of obj. i loop */

for (i = 0; i < free_vert; i++)

{

if (normalcount[i].n 1= 0) {
vertlst[i]}.normal.x /= normalcountlil.n;
vertlst{i].normal.y /= normalcountlil.n;
vertlst(i].normal.z /= normalcount{il.n;
}

)

/* Free the temporary storage */
free(normalcount);

} /* end of rebuild_planeq */

new_cut_plane(cut__normal,plane_locate,new_plane_ptr,n_vert_ptr)
VECTOR cut_normal;

POINT plane_locate;

POINT *new_plane_ptr;

int *n_vert_ptr;

{

int i,j,k,n_vert,n_cut,search,plane_index,kl,ﬂag;
int kk.ji;

POINT box{8],new_point;

LINE cut_line;

short temp_indexo,temp_index1,e_index,pass;

struct {
float x;
float y;
float z;
short e_index;
short v_index0;
short v_indexl;
short p_index;
short flag;
Jeut_point{12];
VECTOR vtemp;



POINT new_plane{6];
float dot_product();
float cosal4];

box{0].x = bbox{0][0]; box{0].y = bbox{1][0]; box[0].z = bbox{210];
boxi 1].x = bbox[0}{1]; box{1].y = bbox{1]{0]; box{1].z = bbox{2X0];
boxi2]x = bbox{0][1]; box{2].y = bbox{1][0]; box{2].z = bbox{2X1];
boxi3]x = bbox{0}{0]; box{3).y = bbox{1][0]; box{3].z = bbox{211];

box{4).x = bbox[0]{0]; box{4].y = bbox{1]{1]; box{4].z = bbox{2X0];
box{5].x = bbox[0){1]; box{5).y = bbox{1][1}; box{5].z = bbox{2J0];
box{6].x = bbox{0][1]; box{6].y = bbox{1][1]; box{6].z = bbox{2I 1];
box{7].x = bbox{0][0]; box{7].y = bboxi 1][1]; box{7].z = bbox{2[(1];

n_cut = 0;
printf ("\n%3.3f %3.3f %3.3f" ,plane_locate.x,plane_locate.y,plane_locate.z);

for (i=0;i<6:i++X
for (j=0;j<4;j++)
k = vertex_index{il(j];
vtemp.u = box[--k].x - plane_locate.x;
vtemp.v = box[k].y - plane_locate.y;
vtemp.w = box[k}.z - plane_locate.z;
cosalj] = dot_product(&cut_normal,&vtemp);
}

if (cosa[0] <=0.0 && cosa[1] <=0.0 && cosa(2] <=0.0 && cosa[3] <=0.0 )

goto jump;

for (j=0gj<4g++){

k = vertex_index[il[j};

kl=(j==3)?vertex_index{i][0] : vertex_index{i][j+1];
cut_line.p0.x = box{-k].x;

cut_line.p0.y = boxikl.y;

cut_line.p0.z = box{k).z;

cut_line.plx = box{-k1].x;

cut_line.pl.y = box(k1l.y;

cut_line.pl.z = box{k1].z;

flag = plane_cut_line(cut_normal,plane_locate,cut_line,&new_point);

|1 flag == PARTCUTO | | flag == ENDCUTO | | flag == ONPLANE ){

cut_point{n_cut].x = new_point.x;
cut_point{n_cutl.y = new_point.y;
cut_point{n_cut].z = new_point.z;
cut_point[n_cut}.v_index0 = k;
cut_point{n_cut].v_indexl = k1;
cut_point{n_cut].flag = UNPICKED;

if (flag == ENDCUT1 | | flag == ENDCUTO || flag == ONPLANE)
cut_point{n_cut].e_index = (flag = ENDCUT1) ? kl:k;

else
eut_point{n_cut].e_index = NOTEND;
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cut_point{n_cut++].p_index = i;
cut_point{n_cut].x = new_point.x;
cut_point[n_cutl.y = new_point.y;
cut_point{n_cut].z = new_point.z;
cut_point[n_cut).v_index0 = k;
cut_point{n_cut].v_index1 = k1;
cut_point{n_cut].flag = UNPICKED;
cut_point{n_cut].e_index = k1;
cut_point{n_cut++].p_index = i;
}
if (n_cut>12){
printf("n_cut more than 12 "y
shut_down_corel();
exit(1);
}
}
) /* end of j loop (line loop) */
jump: j=0;
}/* end of i loop (plane loop) */

cut_point{0].flag = PICKED;
temp_index0 = cut_point{0].v_index0;
temp_index1 = cut_point[0].v_index1;
e_index = cut_point{0l.e_index;
plane_index = cut_point{0].p_index;
new_plane{0].x = cut_point[0].x;
new_plane[0].y = cut_point{0].y;
new_piane[0].z = cut_point{0].z;

if (cut_point{0].e_index == NOTEND)}{
for (i=1;i<n_cut;i++)
if ((temp_index0 == cut_point(i].v_index0
&& temp_indexl == cut_point(il.v_index1) 1|
(temp_index0 == cut_pointlil.v_index1
&& temp_index1 == cut_point(i].v_index0)) cut_point{il.flag = END;
}
else {
for (i=1;i<n_cutji++)
if (e_index == cut_point(il.e_index
&& plane_index != cut_point{il.p_index) cut_pointlil.flag = END;
L

n_vert=1;
pass =0;
search = BEGIN;
kk=1;
while (search == BEGIN ){
if (e_index != NOTEND ) {
for (i=1;i<n_cut;i++)
if (plane_index == cut_point(il.p_index
&& e_index== cut_point{i].e_index)
cut_point{i}.flag = PICKED;

for (i=1;i<n_cut;i++)



if (plane_index == cut_pointli].p_index

&& cut_pointli].flag == UNPICKED )(
cut_point{il.flag = PICKED;
if (e_index = cut_pointl{i].e_index}
temp_index0 = cut_point{il.v_index0;
temp_index1 = cut_point(il.v_index1;
e_index = cut_point{i}.e_index;
new_plane[n_vert].x = cut_point{il.x;
new_plane[n_vert].y = cut_point{il.y;
new_plane[n_vert++].z = cut_peint{il.z;

}

else {

i=l;

while(i<n_cut){

if (plane_index == cut_point{il.p_index &&
cut_pointlil.flag == UNPICKED }{
cut_point{il.flag = PICKED;
temp_index0 = cut_point{il.v_index0;
temp_index1 = cut_point{i].v_index1;
e_index = cut_point(il.e_index;
new_plane[n_vert].x = cut_point{il.x;
new_plane[n_vertl.y = cut_pointlil.y;
new_plane[n_vert++].z = cut_point{i).z;
break;
}

e

}

i=5
while(jj<n_cut){
if (e_index == NOTEND }{
if (cut_point(jjl.flag != PICKED
&&((temp_index0 == cut_point{jj}.v_index0
&& temp_index1 == cut_point[jj].v_index1)
| 1(temp_index0 == cut_point{jj].v_index1
&& temp_index1 == cut_point{jjl.v_index0))
cut_point{jjl.flag = PICKED;
plane_index = cut_point{jjl.p_index;
break;
)
if (cut_point(jjl.flag == END
&&((temp_index0 == cut_point(jjl.v_index0
&& temp_index1 == cut_point{jjl.v_index1)
| | (temp_index0 == cut_point(jjl.v_index1
&& temp_index1 == cut_point{jjl.v_index0)X{
search = END;
break;
)
}
if (e_index ‘= NOTEND ){
if (e_index == cut_point[jj].e_index
&& cut_point[jj].flag == UNPICKED){

cut_point(jjl.flag = PICKED;
plane_index = cut_point{jjl.p_index;
break;

}



if (e_index == cut_point{jj}.e_index
&& cut_point(jj].flag == ENDX

search = END;
break;
)
}
i+
}/* end of jj loop */
if ( pass++ > 6 ) break;
}/* end of search loop */

for (i=0;i<n_vert;i++){
new_plane_ptr->x = new_plane[i]x;
new_plane_ptr->y = new_planelil.y;
new_plane_ptr->z = new_planef{i].z;
new_plane_ptr++;

}
*n_vert_ptr = n_vert;

}/* end of new_cut_plane */

#include <usercore.h>
#include <sun/fbio.h>
#include <stdio.h>
#include <math.h>
#include "model.h”

extern POINT cut_piane(];

extern int nvert,npoly,face_remove,num_shade_level;

extern int npvert{],*pvertptr{],pvert(],indxlist(],number;

extern float  planeq(j[4],vertices[][3],normal[](3];

extern short mycolorl,cindex(],plan_info{l,cline(];

extern float  xmax,xmin,ymax,ymin,zmax,zmin,xcent
,ycent,zcent,length,emin,emax;

extern float  dxlist{],dylist{],dzlist{]
xlist{]ylist(},zlist(],n_vert[][3]line_vert{X3};

/* line variables */
extern int nline,nlvertline_index_list{]npline(];

/* Externals ¥/

extern nobj,npoly,nvert;

extern free_vert,free_poly,free_obj,free_pvert;
extern old_vert,old_poly,old_pvert;

extern float bbox{][2];

extern struct image_status_format image_status;
extern struct obj *objlst;

extern struct poly *polylst;

extern struct vert *vertlst;

extern struct pvert *pvertlst;
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defin_color()

{
int
float

}

%
x,y,2,x0,y0,20,length;

map_ndc_to_world_3(-348.,348.,-870.,&x,&y, &2);
map_nde_to_world_3(0.0,0.0,0.0,&x0,&y0,&20);
x -=x0; y -=y0; 2 -=z0;
length = sqri(x*x +y*y + z*z);
if (length != 0.0)

{

x /=length;y /=length;z /=length;
}

for (i=0; i< nvert; i++)
{
cindex{i]=
fabs(normal[i][0]*x+normai(i][1]*y+normall(i][2]*z) * 255.0;
if (cindex[i]<1.0) cindex{i]=1.0;
if (cindex{i]>255.0 ) cindex{i]=255.0;
}

/* end of defin_color */

backsurface_check()

{

intigjk,p;

int *ptr;

float x{6],y16],2{6],nx,ny,nzc,ai,aj,bi,bj,ci,cj,di,dji;
for (p=0:p<npoly;p++)
{

ptr=pvertptr{p};k=npvert(p];
for (=0 <k;i++)
{
j= ”ptr++;
xlist{i)=vertices{jl0];
ylist{i]=vertices(jl[1};
zlist{i]=vertices(j][2];
}
for (i=0;i<npvert{pl;i++)
map_world_to_nde_3(xlist{i],ylist{i],zlist{i], &x{i],&yli],&z[i]);

c=0.0;

ai=x[1]-x[0];aj=y{1]-yi0];
bi=x[2]-x[1];bj=y(2}-y{1};
ci=x[3]-x{2);cj=y{3]-y{2];
di=x[0]-x[3];dj=y{0]-y{3];

c=ai*bj-aj*bi+bi*cj-bj*ci+ci*dj-cj*di+di*aj-dj*ai;

if (¢ <0.0 && plan_info[p]<0 ! | ¢ >0.0 && plan_info{p]>0)
plan_info[p]= -plan_infolp];

}

/* end of backsurface_check */



ndc_to_world()

{
float x.y,z;
for (i=0ji<nvert;i++)
{
n_vert(i][0] *=1020;
n_vert{i)[1] *=1020;
n_vert{i][2] *=1020;
if (i==0)
{
xmin=xmax=n_vert{iJ[0];
ymin=ymax=n_vert{i][1];
zmin=zmax=n_vert{i][2];
}
else
{
xmin= (xmin>n_vert{iJ[0])? n_vert{i][0]:xmin;
xmax= (xmax<n_vert(i]J[0])? n_vert{i][0]xmax;
ymin= (ymin>n_vert[i][1])? n_vert{il[1]:ymin;
ymax= (ymax<n_vert{i][11)? n_vert{i][1]};ymax;
zmin= (zmin>n_vert{i}[2])? n_vert{i][2):zmin;
zmax= (zmax<n_vert{i][2])? n_vert[i}[2]:zmax;
emin= (emin> cindex(i]) ? cindex{il:emin;
emax= (emax< cindex[i]) ? cindex{i}:emax;
}
}
xcent=xmin+(xmax-xmin)2;
ycent=ymin+{ymax-ymin)/2;

zcent=zmin+(zmax-zmin)2;
for (i=0i<nvert;i++)

{

if (cindex{i]>1)
cindex{i]=(int) (cindex[i]-emin)*num_shade_level/{(emax-emin);
)
} /* end of ndc_to_world */
drawline()

{
int i,j,k,np,color,v_index;
int *ptr;

ptr= &line_index_list{0];
for (i=0;icnline;i++)
{
np=npline(i];
color = cline{i];
if (color < 0)
pir +=np;
else



{
set_linewidth(0.3);
set_line_index(color);
for (ja0j<npg++)

{

v_index = *ptr;
xlist(j] = line_vert{v_index}{0];
ylist[j] = line_vert[v_index]{1];
zlist(j] = line_vert{v_index]{2];
par++;
}
polyline_abs_3(xlist,ylist,zlist,np);
)
}
set_linewidth(0.0);
) /* end of drawline *f

draw_axis()

{

int color;

/‘

set_line_index(100);
move_abs_3(0.0,0.0,0.0);
line_rel_3(200.0,0.0,0.0);
set_line_index(60);
move_abs_3(0.0,0.0,0.0);
line_rel_3(0.0,200.0,0.0);
set_line_index(80);
move_abs_3(0.0,0.0,0.0);
line_rel_3(0.0,0.0,200.0);
set_line_index(4);

*/

} /* end of draw axis */

define_color()

{

int i

float x,y,2,x0,y0,20,length;

map_ndc_to_world_3(-348.,348.-870.,&x,&y,&z);
map_ndc_to_worid_3(0.0,0.0,0.0,&x0,&y0,&z0);
X -=x0; y -=y0; z -=20;
length=sqrt(x*x+y*y+z*z);
if length !=0.0)

{

x /=length;y /=length; z /=length;
}

for (i=0;i<nvert;i++)
{
cindex{i]=(int)fabs(normal(i){0]*x+normal(i][1]*y+normal[i)[2]*2)* 254.0;
if (cindex[i}<1.0) cindex[i]=1.0;
if (cindex{i]>255.0) cindex(i]=255.0;
}

} /* end of define_color */



world_to_ndc()
{
intijk;
for (i=0;i<nvert;i++)
{
map_world_to_ndc_3(vertices[i][O],vertices[i][1],vertices[i][2],
&n_vert(i)[0],&n_vert{i][1],&n_vert{ill2]);
}
} /* end world_to _ndc */

draw_box()

{

inti;

float x[5),y15},2(5);
set_linewidth(0.3);
set_line_index(BOX_COLOR);
x[0]=x{4]=x[3]=bbox{0][0];

x{ 1]=x{2]=bbox{0][1];

2{0)=2[ 1}=2{4]=bbox{2] 0];

2 2]=2(3]=bbox{2][1];
polyline_abs_3(x,y,2,5);
yi0l=y{1]=y{2]=yl3)=y{4}=bbox{ 1][1};
polyline_abs_3(x,y,z,5);

yl0)=y{4]=y{3]=bbox{1][0};
yl1]=yi2]=bbox{1][1];

2 0)=2{ 1]=2{4]=bbox{2]0};
A2]=2{3]=bbox[2][1};

x[0}=x{ 11=x{2]=x{3]=x{4]=bbox{0][1};
polyline_abs_3(x,y,2,5);

x[0}=x{ 1]=x{2]=x{3)=x{4]=bbox[0][1];
polyline_abs_3(x,y,2,5);

x[0]=x{4])=x[3)=bbox{0]{0];
x[1]=x{2]=bbox{0][1];

y{0]=yi 1]=y{4]=bbox{1](0]};
y{2)=y13)=bbox[1]{0];
yi2]=y{31=bbox{1]1};

74 0}=2[1}=2{2]=2{3}=2{4}=bbox{2][0};
polyline_abs_3(x,y,z,5);

Z40)=2 1}=2{2}=2{3)=z 4}=bbox{2][1];
polyline_abs_3(x,y,z,5)%
draw_axis();

} /* end of draw_box */
drawface(p)

int p;

{

intijk;

int *ptr;

ﬂoat x{G],y[G],Z{sl,nx,ny,nz,caai yajvbi lbj)d ,Cj rdirdj;;
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ptr=pvertptr{p};
for (i=0;i<cnpvert{pl;i++)
{

j= *ptr++;
xlist{iJ=vertices{jEO];
ylist[i]l=vertices(jH1];
zlist{i]=vertices{j{2};
)
for (i=0;icnpvert{plii++)
map_world_to_ndc_a(xlisdi],ylist[i],zlist{i],&x{i],&y[i].&z[i]);

c=0.0;

ai=x{1]-x[0};aj=y{1]-y{0];
bi=x[2]-x{1};bj=y{2]-y{1};
ci=x{3)-x(2]:cj=yi3)-y12];
di=x[0]-x[3);dj=y{0]-y{3];

c=ai*bj-aj*bi+bi*cj-bj*ci+ci*dj-cj*di+di*aj-dj*ai;

xlist{4)=xlist{0];ylist{4)=ylist{0];zlist{4]=zlist{0];

if (¢ <0.0 )
polyline_abs_3(xlist,ylist,zlist,npvert{pl+1);
} /* end of drawface */
drawobj()
{
inti;
float x{5],15),2[5];

set_line_index(LINE_COLOR);
if (image_status.special == TRUE)
{for (i=618;i cnpoly;i++)

drawface(i);
}
else
for (i=0;i<npolysi++)
drawface(i);
draw_axis();
} /* end of drawobj */
draw_wireframe()
{
short *ptr;
struct vert *vertlstptr;

int i,j,k,index,num_vert,poly_index;

set_line_index(LINE_COLOR);
for (i=0;i<nobj;i++){
poly_index = objlst{i].index;



for (j=0gj<objlstlil.npoly;j++X
linking(&poly_index);
ptr = polylst{poly_index].pvert.ptr;
num_vert = polylst{poly_index++].npvert;
for (k=0:k<num_vert;k++){
vertlstptr = vertlst + *ptr++;
xlist(k] = vertistptr->vertax.x;
ylist{k] = vertlstptr->vertexry;
zlist{k] = vertlstptr->vertex.z;
}
xlist{k] = xlist{0]ylist(k] = ylist{0]; zlist{k] = zlist{0];
polyline_abs_3(xlist,y]ist,zlist,num_vert+1);
}/* end of j poly loop */
}/* end of i obj loop */
} /* end of draw_wirefram */

drawobj1()

{

int i,j,k,index,num_vert,poly_index;
float x,y,2,x0,y0,20,length;

short *ptr,*colorlst,color_level;
struct vert *vertlstptr;

map_ndc_to_world_3(848.0,348.0,.870.0,&x,&y,&z);
map_ndc_to_world_3(0.0,0.0,0.0,&x0,&y0,&10);
X -= x0;y -= y0; z -= 20;
length = sqr(x*x+y*y+z*z);
if (length != 0.0)
{

x /=length;y /=length; z /=length;
}

colorlst = (short *)malloc(free_vert * sizeof{short));
for (i=0;i<free_verti++)
colorlst{i]= fabs
(vertlst{i].normal x*x+vertist{il.normal.y*y
+vertist{i].normal.z*z)*1000.;
if (i==0)
emin=emax=colorlst{0};
else
{
emin= (emin> colorlst{i]) ? colorist{i}:emin;
emax= (emax< colorlst{i]) ? colorlst{i):emax;
)
}

for (i=0;i<free_vert;i++)
colorlst{i] = (coloristli]>1)?
{(intXcolorlst{i]-emin)*num_shade_level/(emax-emin)):1;

for (i=0;i<nobj;i++ )
poly_index = objlst[ilindex;

for (j=07j<objlst{il.npoly;j++)
/ *
again3: while (polylst{poly_indexl.info == DELETE) poly_index++;



if (polylst[poly_index].info < 0 )
poly_index = polylst{poly_index].pvert.index;
if (polylst(poly_index}.info == DELETE) goto again3;
*/

linking(&poly_index);
ptr = polylst{poly_index].pvert.ptr;
num_vert = polyist{poly_index].npvert;

color_level = (polylst{poly_index++].info-1)*num_shade_level+1;
for (k=0;k<num_vert;k++)}
indxlist{k]}=colorist[*ptr]+color_level;
vertlstptr = vertlst + *ptr++;
xlist(k] = vertlstptr->vertex.x;
ylist{k] = vertlstptr->vertex.y;
zlist{k] = vertlstptr->vertex.z;
)
set_vertex_indices(indxlist,num_vert);
polygon_abs_3(xlist,ylist,zlist,num_vert);
}/* end of j poly loop ./

}/* end of i obj laop */
free(colorist);
)} 7* end of drawobjl */

image_switch()
{
if (face_remove)
{
new_frame();
face_remove=FALSE;
}
else
{
if (image_status.wire_frame)
{
delete_retained_segment(WIREFRAME);
create_retained_segment(WIREFRAME);
draw_wireframe();
close_retained_segment(WIREFRAME);
)
if (image_status.out_box)
{
delete_retained_segment(OUTBOX);
create_retained_segment(OUTBOX);
draw_box();
close_retained_segment(OUTBOX);
}
if (image_status.line)
{
delete_retained_segment(DRAWLINE);
create_retained_segment(DRAWLINE);
drawline();
close_retained_segment(DRAWLINE);
)



draw_cut_plane(n_point) int n_point;
{inti;
move_abs_3(cut_plane(0].x,cut _plane{0].y,cut_plane{0].2);
for (i=0:i<n_point;i++)
xlist{i] = cut_planef{il.x;
ylist{i] = cut_plane{il.y;
zlist{i] = cut_plane[il.z;

}
xlist{i] = cut_plane{0]x;ylist{i] = cut_plane{0].y;zlist{i] = cut_plane{0].z;
set_line_indextMENU_TEXT_COLOR);
polyline_abs_3(xlist,ylist,zlist,n _point+1);

} /* end of draw_cut_plane */

#include <math.h>

#include"model.h"

/* Cross_product,dot_product and vector normalization */

id PR 222 R L LS L] DOt product ***#*t*ttt#ttt*t**/

/* Input the points of vector A and B *f
* Return value : cos(theta) */

float dot_product(pva,pvb) VECTOR *pva,*pvb;
{
float cos_theta;
normalize(pva);
normalize(pvb);
cos_theta=((pva->u)*(pvb->u) + (pva->v)*(pvb->v) + (pva->w)*(pvb->w));
return(cos_theta);

} /* end of dot_product  */

/“.t“t‘t.‘#### Normalizettt#*#t*tt#tt‘t*tt/

/* Input the point of the vector which will be normalized */

normalize(pv) VECTOR *pv;

{
float m;
m= sqri((pv->u)*(pv->u) + (pV->V)*(pv->v) + (pv->W)*(pv->W));
pv->u/=m;
pv->v /=m;
pv->W /=m;
} /* end of vector_normalize */

/*““‘*‘**‘* Cross_product i*‘###it*‘tt*t/
cross_product(pve,pva,pvb)

VECTOR *pva,*pvb,*pve;
{

/*normalize(pva);

normalize(pvb);*/



pve->u = (pva->v) * (pvb->w) - (pva->w) * (pvb->v);
pve->v = (pva->w) * (pvb->u) - (pva->u) * (pvb->w);
pve->w = (pva->u) * (pvb->v) - (pva->v) * (pvb->u);

/ L ]
ifl(pve->um=0) && (pve->vanl) && (pve->wa=0))
{
if (pvb->u==0) {pve->u = 1.0; pve->v=0.0; pve->w = 0.0}
else
{
if ( pvb->v==0) { pvc->u = -1.0/pvb->w; pve->v=0.0; pve->w = 1.0/pvb->u;}
else
{
pve->u = 1.0;
pve->w = 1.0;
pve->v = « pvb->u + pvb->w) / pvb->v;
}
}
normalize(pve);
}
*/

} /* end of cross_product */

matinv(ptr)
float *ptr;

short index{3][2], ipivot{3];
float pivot{3],mtxout{3](3];
short row, colum;

float max;

shorti,j, k, |;

for (i=0;i<3;i++)
for (j=05j<3;j++)
mtxoutlilj] = *(ptr+i*3+j);

for (j = 0;j < 3;j++)
ipivot{j] = 0;

for(i=0;i <3;i++){
max = 0.0;
/* Search for pivot element */
for G=0;j < 3;j++) {
if (ipivot{jl== 1)
continue;
fork=0:k <3 k++) {
if (ipivot[k] == 1)
continue;
if (ipivot{k] > 1)
return( 0);
if (fabs(max) < fabs(mtxout{jl[k])) {
row =j;
colum = k;
max = mtxout{jllk];
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}

/* Row intercahnge */
ipivot{colum] += 1;
if (row l= colum) {
for(1=0;1<3;14++) {
max = mtxout{row](1};
mtxout{row][l] = mtxout{columIl]};
mtxout{colum](l] = max;

}

index(i){0] = row;
index{i](1} = colum;
pivot(i] = mtxout{colum]{colum};

mtxout{ colum]{colum] = 1.0;
for(1=0;1<3;1++)
mtxout{colum}l] /= pivodil;

for G =0;j < 3; j++)
if j = colum) {
max = mtxout{j{colum];
mtxout(jj[colum] = 0.0;
for (1=0; 1<3; 14+)

mtxout(j[1] -= mtxout{colum]l] * max;

}

for(i=0;i<3;i++){
1=23-1- i;
if (index{1]{0} != index{1])[1} {
row = index{1]){0];
colum = indexf1)[1];
for (k=0; k<3; k++) {
max = mtxout{k}[row};
mtxout{k][row] = mtxout{kl[colum];
mtxout{k}{colum] = max;

}
)
for (1=0;i<3;i++)
for (j=0:j<3;j++)
*(ptr+i*3+j) = mtxout{il(j];

* Module: load_file()
* Functions:

1. Check data format;
2. Allocate memory;
3. Setup scaling parameters;



4. Genarate object list;

5. Compute the parameters of each poly.

6. Compute the average normal at each vertex;
7. Free the temporary storage.

* Input:

data file: objects data, polygons data.
* OQutput:

object list, polygons list, vertices list;
* Last change 10/8/88
*f

#include <math.h>
#include <stdio.h>
#include "model.h"

extern int npoly,face_remove,num_shade_level;

extern int npvert{],*pvertptr{],pvert{],indxlist[],number;

extern float bbox(1[2],planeq(}{4],vertices[][3],normai(}(3];

extern short mycolorl,cindex(],plan_info[],cline(];

extern float  xmax,xmin,ymax,ymin,zmax,zmin,xcent
,ycent,zcent,length,emin,emax,scale;

extern float  dxlist{],dylist{],dzlist(]
Xlist[],ylistl],zlist{],n_vert[][3),}ine_vert{3];

/* line variables */
extern int nline,nivertline_index_list{],npline(];

extern struct image_status_format image_status;

/* Externals ¥/

extern nobj,npoly,nvert;

extern free_vert,free_poly,free_obj,free_pvert;
extern old_vert,old_poly,old_pvert;

extern float bbox{3][2];

/* Externals */

extern struct obj *objlst;
extern struct poly *polylst;
extern struct vert *vertlst;
extern struct pvert *pvertist;

load_file(filename)
char *filename;
{
int ij;
int vtmp,v1,v2,v3;
float ftmp,maxd,offset{3];
float x,y,2,x0,y0,length;
FILE *fptr;
struct count(
shortn



5

struct count *normalcount;

/* 1. Check data format; ¥/
if (fptr = fopen(filename, "r")) == NULL) {
printf{"Can't open file: %8\n", filename);
return(1);
}
fscanf(fptr, "%d%d%d", &nobj,&npoly,&nvert);
if (nobj > MAXOBJ ) {
printf("Too many objects\n");
return(1);
}
if (npoly > MAXPOLY ) {
printf("Too many polygons\n");
return(1);
1
if (nvert > MAXVERT ) {
printf{"Too many verices\n");
return(1);
}
if (nobj<=0 | | npoly <=0 | | nvert <=2 ){
printf{"Check your data! \n");
return(1);

}

/* 2. Allocate memory */
if (objlst != NULL ) free(objlst);
objlst = (struct obj *)malloc(nobj * sizeof{struct obj));

if (polylst != NULL ) free(polylst);
polylst = (struct poly *)malloc({npoly+MAXNEWPOLY) * sizeof{struct poly));

if (vertlst != NULL ) free(vertlst);
vertlst = (struct vert *)malloc{(nvert+ MAXNEWVERT) * sizeof{struct vert));

if (pvertlst |= NULL ) free(pvertlst);
pvertlst =(struct pvert *) malloc((MAXPVERT + MAXNEWPVERT) * sizeof(short));

/* 3. Setup scaling parameters */
fscanf(fptr, "%f%f%f%f%f%f", &bbox[0][0], &bbox{0][1], &bbox{1][0],&bbox{1][1],
&bbox[2]{0], &bbox{2][1]);

maxd = 0.0;
for(i=0;i<3;i++) {
offset{i] = (bbox{i]{0] + bbox{i][1])/ 2.0;
bbox{i][0] -= offsetli];
bbox{i][1] -= offsetli];
if (bbox{il[0] > bbox[il[1]) {
ftmp = bbox{i][0];
bbox{i][0] = bbox{i][1];
bbox({il[1] = ftmp;
}
if (maxd < bbox{il[1])
maxd = bbox{il{1];
}
scale = 1000.0 / maxd;
for(i=0:;1i<3;i++) {



bbox{i][0] *= scale;
bbox{il[1] *= acale;
}

free_vert=free_pvert=free_poly=free_pvert=0;

/* 4. Genarate object list */

if (normalcount '= NULL ) free{(normalcount);
normalcount= (struct count *)malloc((nvert )* sizeof(struct count));
if (normalcount == NULL ) {
printf("\nMerory too small!!In");
exit(1);
}

for (free_obj=0;free_obj<nobj;free_obj++) /* objects input */

/%

{
fscanfifptr, “%d%d",&objlst[free_objl.npoly, &objlst{free_objl.nvert);
objlst{free_objl.index= free_poly;
if (normalcount != NULL ) free(normalcount);
normalcount= (struct count *)malloc(objlst{free_obj].nvert
* gizeoflstruct count));*/

/* vertices input */

for (i = 0; i <objlst{free_objl.nvert; i++)
{
fseanfifptr, "%f{%f%f", &x, &y,&z2);
vertlst{free_vert].vertex.x = (x-offset[0])*scale;
vertlst{free_vertl.vertex.y = (y-offset[1])*scale;
vertlst{free_vert].vertex.z = (z-offset[2])*scale;
vertlst{free_vert].normal.x = vertist{free_vert].normal.y

= vertlst{free_vert].normal.z =0.0;
normalcount{free_vert++].n = 0;
}/* end of vertices input */

/* polygons input */

for (i = 0; i <objlst{free_objl.npoly ; i++)

{

fscanf{fptr, "%d",&vtmp );

polylst{free_polyl.npvert = vtmp;

if ((old_pvert + polylst{free_poly].npvert) > MAXPVERT)
{

printf{"Check your data !! RUN OVER PVERTLIST.\n");
return(3);
}
fscanfifptr, "%d", &vtmp);
polylst{free_polyl.info=vtmp;
polylst(free_poly]l.pvert.ptr = &pvertlst{free_pvert].index;
for (j = 0; j <polylst{free_polyl.npvert ; j++)
{
fscanf(fptr, "%d", &vtmp);
pvertlst{free_pvert++].index = vtmp - 1;
}
polylst{free_polyl.planq.a = polylst{free_poly].planq.b
= polylst(free_poly].planq.c = polylst{free_poly].planq.d = 0.0;

v1 = pvertlst{free_pvert-1l.index;

v2 = pvertlst{free_pvert-2].index;
v3 = pvertlstifree_pvert-3].index;
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/* 5. Compute the parameters A,B,C and D of each poly. */

for (= 0; j < 3; j++)
{

polylst{free_polyl.planq.a += vertlst{vi].vertex.y*
(vertlst{v2].vertex.z - vertlst{v3].vertex.z);
polylst{free_polyl.plang.b += vertlst{vl].vertexx *
(vertlist{v3].vertex.z - vertlst(v2].vertex.z);
polylstifree_polyl.planq.c += vertlst{vl].vertex.x *
(vertlst{v2].vertexy - vertlst{v3].vertex.y);
polylst{free_poly].planq.d += vertlst{vl].vertex.x *
((vertlst{v3).vertex.y * vertlst[v2].vertex.z) -
(vertlst[v2].vertex.y * vertlst{v3].vertex.z));

vtmp = vl; vl = v2; v2 = v3; v3 = vtmp;
)

/* 6. Compute the average normal at each vertex

x = polylst{free_poly].planq.a;
y = polylsti{free_polyl.plang.b;
z = polylst{free_poly].planq.c;
length = sqrt( x*x + y*y + z*2);

for (j = 1; j <= polylst{free_polyl.npvert;j++)
{ /* accum normls */

vtmp = pvertlst{free_pvert-jl.index;
vertlst{vtmpl.normal.x += x/length;
vertlst{vtimpl.normal.y += y/length;
vertlst{vtmp].normal.z += z/length;
normaicount{vtmpl.n++;

}

free_poly++;

| ¥ad end of poly input */
=5
for (i = old_vert; i < free_vert; i++)
{
vertlst{il.normal.x /= normalcount(j].n;
vertlst{i].normal.y /= normalcount{jl.n;
vertlst{il.normal.z /= normalcount{j++}.n;

}

/* 7. Free the temporary storage */
old_poly=free_poly;
old_pvert=free_pvert;
old_vert=free_vert;

} /* end of object input  */

/* 7. Free the temporary storage */
free(normalcount);

felose(fptr);

*/



return(NULL);

} /* end of load_file() */

#include <usercore.h>
#include <sun/fbio.h>
#include <stdio.h>
#include <math.h>

#include "model.h"

extern int n_button;

extern float menu_x,menu_y,menu_h,menu_w,menu_f,window_fact;
extern struct menu_table_format menu_table(];

extern struct view_parameters_format my_view_parameters;
extern struct image_status_format image_status;

int menu_select()
{
float mx,my,fx,fy,{z;
float x,y,2;
int i,j,k,button,mycase;
set_primitive_attributes(&PRIMATTS);
mycase = (;
set_echo(LOCATOR, 1 ,1);
for (;;)
{
do
await_any_button_get_locator_2(20000000,1,&button,&mx,&my);
while(button == 0);
if (button==1)&&(mx>0.9)&&(my>0.01)&&(mx<0.98)&&(my<0.66))
{
mx=(mx-.9)*¥1000.0;
my=my*767.0/0.75;
for (k=0;k<n_button;k++)
if ((mx<menu_table[k].maxx)&&(mx>menu_table(k].minx)& &
(my<menu_table(k].maxy)&&(my>menu_table[k].miny))
mycase=menu_table{k].button_id;

break;
}
}
set_echo(LOCATOR,1,0);
return(mycase);

} /* end of menu_select */
int call_menu(menuname,flag)

int menuname,flag;

{



inti;
inquire_viewing_parameters(&my_view_paramebers);
set_menu_vw();
set_segment_visibility(menuname,TRUE);
i = menu_select();
set_segment_visibility(menuname,flag);
set_viewing_parameters(&my_view_parameters);
return(i);
} /* end of call menu */

set_menu_vw()

{
set_view_reference_point(0.0,0.0,0.0);
get_view_plane_normal(0.0,0.0, -1.0);
set_view_plane_distance(0.0);
set_projection(PARALLEL,0.0,0.0,1.0);
set_view_up_3(0.0,1.0,0.0);
set_window(0.0,100.0,0.0,767.0);
set_view_depth(0.0,1.0);
set_window_clipping(FALSE);
set_viewport_3(0.92,1.0,0.0,.75,0.0,1.0):

} /* end of set_menu_view */

init_menu()

{

int ij,k;
inquire_viewing_parameters(&my_vi ew_parameters);
set_menu_vw();
create_retained_segment(MENU);
set._segment_visibilit.y(MENU,TRUE);

build_menu_table();
build_menul();

/*
build_menu();
*/
close_retained_segment(MENU);
set_viewing_parameters(&my_view_paramet.ers);
} /* end of init_menu */

build_menu_table()
{

FILE *fptr;

short i,nj;

int status;

char nam(16];

float px,py;

fptr = fopen("menu_file", "r");
fscanfifptr, "%f%f%f%f%d%{", &menu_x,&menu _y,&menu_w,&menu_h,&n_button,&menu_f);
pX= menu_x;



py= menu_y;

for (i=0;i<n_button;i++)
{
for (j=05<16j++) nam(jl=4;
fscanfifptr, "%d", &status);
fscanfifptr, "%d", &menu_table[i]l.button_id);
fscanfifptr, "%d", &menu_table[il.button_frame);

=0

do
facanfifptr, "%c", &namljl);
while (nam[j++]!=10);

menu_table{i].button_status = status;

for (j=0j<16j++)
if (namlj] >=65 && namij} <=90) | | (nam(j] >=97 && naml(j] <=122))
menu_table[il.name{jl=nam(j];
else
menu_table[i].name{j]=32;

if (menu_table{il.button_status == TRUE)
menu_table[i].maxx=px+menu_w-menu_h/menu_f}
else
menu_table[i]l.maxx=px+menu_w/2.0 -menu_h/menu_f;

menu_table(i}.minx=px+menu_h/menu_f;
menu_table[i].maxy=py;
menu_table{il.miny=py-menu_h;

if (menu_table(il.button_status == TRUE)
PY -= menu_h;
else
{
if ({(px+menu_w/2.0)>= (menu_x+menu_w))
{
PX = menu_x;
pY -= menu_h;
}
else
px +=menu_w/2.0;

}

}/* end of i loop */
fclose(fptr);
} /* end of build_menu_table */

build_menul(}

{

intijk;

float px,py,factor,x{12],y{12],2{12];

set_linewidth(0.3);
set_line_indextMENU_BOX_COLOR);



factorsmenu_h/menu_f;
px=menu_x;
py=menu._y;
for (i=0;i<n_button;i++)
{
x{0]=menu_table{i}.minx-factor;
yl0]=menu_table{i].miny+factor;
x{1}=menu_table{il.minx;
y{1]=menu_table{il. miny;
x{2]=menu_table[i].maxx;
y{2]=menu_table(i].miny;
x{8]=x[2]+factor;
y[31=yl0];
x{4]=x{3];
yl4}=menu_table{il.maxy-factor;
x{5]=menu_table[i].maxx;
y{5]=menu_table[i].maxy;
x(6}=x1];
yl6]=menu_table[i]. maxy;
A 7]=xi0];
yl7l=yl4);
x(8]=x0};
yi8l=yl0];
move_abs_3(x[7],y517],0.5);
if (menu_table{i].button_frame == 0)
{
polyline_abs_2(x,y,9);
move_abs_2(x{0],y[0]+factor*1.8);
set_text_indextMENU_TEXT_COLOR);
text(&menu_table[i].name[0]);
)

else

set_fill_index(menu_table[i].button_frame);
polygon_abs_2(x,y,9);
move_abs_2(x{0],y[0]+factor*1.6);
set_text_index(129);
text(&menu_table[il.name[0]);

}

if (menu_table[i].button_status== TRUE)
{
py -=menu_h;
pX = menu_x;

}

else
{
if ((px+menu_w/2.0)>= {menu_x+menu_w))
{
PX = menu_x;
py -= menu_h;
}
else
px +=menu_w/2.0;
}
}
set_linewidth(0.0);
} /* end of build_menu */



#include <usercore.h>
#include <sun/fbio.h>
#include <stdio.h>
#include <math.h>

#include "model.h"

extern float red(],grn{},blu(],dot,T,B,L,R,window_fact;
extern struct vwsurf *our_surface;

shut_down_corel()

{
terminate_devices( KEYBOARD,1);
deselect_view_surface(our_surface);
terminate_view_surface(our_surface);
terminate_core();

} /* end of shut_down_corel */

start_up_core()
{

inti;

FILE *fptr;

initialize_core(BASIC,SYNCHRONOUS,THREED);
our_surface->cmapsize = 256;
our_surface->cmapname(0}='\0';
iflinitialize_view_surface(our_surface, TRUE)) exit(1);
initialize_device(BUTTON,1);
initialize_device(BUTTON,2);
initialize_device(BUTTON,3);
select_view_surface(our_surface);
set_light_direction(-0.45,0.45,-0.45);

set_shading_parameters(.5,.5,.5,0.5,7.,0,0);

initialize_device(t KEYBOARD,1);
set_echo_surface(dKEYBOARD,1,our_surface);
set_keyboard(1,80,"",1);
initialize_device(LOCATOR,1);
initialize_device( PICK, 1);

set_pick(1,0.001);

set_echo(LOCATOR,1,0);
set_echo_surface(LOCATOR,1,our_surface);
/*set_output_clipping(TRUE);*/

fptr = fopen("new_color.dat”, "r");

inqm're_color_indices(our_surface,o,255,red,grn,blu);
fscanflfptr, "%f%f%f%I%", &dot,&T,&B,&L,&R);
for (i=0:1<256;i++)
fscanfifptr, "%f", &red[i]);
for (i=0;1<256;i++)
fscanf(fptr, "%f{", &grnli]);



for (i=0;i<256;i++)
fscanfifptr, "%f", &bluli));
define_color_indices(our_surface,0,255,red,grn,blu);

felose(fptr);

} /* end of start_up_core */

setvwpo(vx, vy, vz,bbox)
float vx, vy, vz,bbox{3][2];
{
inti;
float diag, del, objdist, near;

set_view_reference_point(vx, vy, vz);
set_view_plane_normal(-vx, -vy, -vz):
set_projection(tPERSPECTIVE, 0., 0., 0.);
set_view_plane_distance(256.0);
if (vx == 0.0) && (vz == 0.0))

set_view_up_3(0.0, 0.0, vy);
else

set_view_up_3(0.0, 1.0, 0.0);
set_window(-80.0*window_fact, 80.0*window _fact, -65.0*window_fact, 65.0*window_fact);
diag a 0.0;
for(i=0;i<3;i++) {

del = bbox{i][1] - bbox{i][0];

diag += del * del;

}
diag = sqrt(diag) / 2.0;
objdist = sqri( vx*vx + vy*vy + vz*vz);
near = (diag >= objdist) ? objdist/2.0 : objdist-diag;
set_view_depth( near, objdist + diag);
set_window_clipping(TRUE);
set_front_plane_clipping(TRUE);
set_back_plane_clipping(TRUE);

/t

set_viewport_3(.17, .92, 0., .75, 0.0, 1.0);

*/

}7* end of setvwpo */
setvwpv()

{
set_view_reference_point(0.0,0.0,0.0);
set_view_plane_normal(0.0,0.0,-1.0);
set_view_plane_distance(0.0);
set_projectiont PARALLEL,0.0,0.0,1.0);
set_view_up_3(0.0,1.0,0.0);
set_window(0.0,1023.0,0.0,767.0);
set_view_depth(0.0,1.0); ’
set_window_clipping(FALSE);
set_viewport_3(0.0,1.0,0.0,.75,0.0,1.0);

} /* end of setvwpv */



